Author: Ames, F.
Paper Title Page
MOXGB2 ARIEL at TRIUMF: Science and Technology 6
 
  • J.A. Bagger, F. Ames, Y. Bylinskii, A. Gottberg, O.K. Kester, S.R. Koscielniak, R.E. Laxdal, M. Marchetto, P. Schaffer
    TRIUMF, Vancouver, Canada
  • M. Hayashi
    TRIUMF Innovations Inc., Vancouver, Canada
 
  The Advanced Rare Isotope Laboratory (ARIEL) is TRIUMF's flagship project to create isotopes for science, medicine and business. ARIEL will triple TRIUMF's rare isotope beam capability, enabling more and new experiments in materials science, nuclear physics, nuclear astrophysics, and fundamental symmetries, as well as the development of new isotopes for the life sciences. Beams from ARIEL's new 35 MeV, 100kW electron linear accelerator and from TRIUMF's original 500 MeV cyclotron will enable breakthrough experiments with the laboratory's suite of world-class experiments at the Isotope Separator and Accelerator (ISAC) facility. This invited talk will present an overview of TRIUMF, the ARIEL project, and the exciting science they enable.  
slides icon Slides MOXGB2 [65.009 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOXGB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL116 Development and Installation of the CANREB RFQ Buncher at TRIUMF 3914
 
  • B. Barquest, F. Ames, T. Au, L. Graham, M.R. Pearson, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
  • J. Bale, J. Dilling, R. Kruecken, Y. Lan
    UBC & TRIUMF, Vancouver, British Columbia, Canada
  • G. Gwinner
    University of Manitoba, Manitoba, Canada
  • N. Janzen, R.A. Simpson
    UW/Physics, Waterloo, Ontario, Canada
  • R. Kanungo
    Saint Mary's University, Halifax, Canada
 
  Funding: TRIUMF receives federal funding via the National Research Council of Canada. CANREB is funded by the Canada Foundation for Innovation (CFI), the Provinces NS, MB and TRIUMF.
Pure, intense rare isotope beams at a wide range of energies are crucial to the nuclear science programs at TRIUMF. The CANREB project will deliver a high resolution spectrometer (HRS) for beam purification, and a charge breeding system consisting of a radiofrequency quadrupole (RFQ) beam cooler and buncher, an electron beam ion source (EBIS), and a Nier-type spectrometer to prepare the beam for post-acceleration. Bunching the beam prior to charge breeding will significantly enhance the efficiency of the EBIS. The RFQ buncher will accept continuous §I{60}{keV} rare isotope beams from the ARIEL or ISAC production targets and efficiently deliver low emittance bunched beams. A pulsed drift tube (PDT) will adjust the energy of the bunched beam for injection into the EBIS to match the acceptance of the post-accelerating RFQ. Ion optical simulations were carried out to inform the design of the RFQ buncher and PDT. Simulations indicate that delivery of up to 107~ions per bunch with high efficiency is possible. Experience with previous beam bunchers was also brought to bear in the design effort. Installation of the RFQ is under way, and tests with offline beam are expected to be performed in late 2018.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL116  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML025 Operation of an RF Modulated Thermionic Electron Source at TRIUMF 4705
 
  • F. Ames, K. Fong, B. Humphries, S.R. Koscielniak, A. Laxdal, Y. Ma, T. Planche, S. Saminathan, E. Thoeng
    TRIUMF, Vancouver, Canada
 
  ARIEL (Advanced Rare IsotopE Laboratory) at TRIUMF will use a high-power electron beam to produce radioactive ion beams via photo-fission. The system has been designed to provide up to 10 mA of electrons at 30 MeV. The electron source delivers electron bunches with charge up to 16 pC at a repetition frequency of 650 MHz at 300 keV. The main components of the source are a gridded dispenser cathode (CPI - Y845) in an SF6 filled vessel and an in-air HV power supply. The beam is bunched by applying DC and RF fields to the grid. A macro pulse structure can be applied by additional low frequency modulation of the RF signal. This allows adjusting the average beam current by changing the duty factor of the macro pulsing. Unique features of the gun are its cathode/anode geometry to reduce field emission, and transmission of RF modulation via a dielectric (ceramic) waveguide through the SF6. The source has been installed and fully commissioned to a beam power up to 1 KW and tests with accelerated beams have been performed. Measurements of the beam properties and results from the commissioning and operational experiences of the source will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML041 FEBIAD Ion Source Development at TRIUMF-ISAC 4730
 
  • B.E. Schultz, F. Ames, O.K. Kester, P. Kunz, A. Mjøs, J.F. Sandor
    TRIUMF, Vancouver, Canada
 
  The ISOL facility TRIUMF-ISAC utilizes a number of different ion sources to produce radioactive ion beams. Most isotopes are ionized using surface or resonant laser ionization, but these techniques are prohibitively inefficient for species with high ionization energies, such as noble gases and molecules. For these cases, the Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source can be used. The FEBIAD uses a hot cathode to produce electrons, which are accelerated through a potential (< 200 V) into the anode volume. Isotopes entering the resulting plasma undergo impact ionization and are extracted. Efforts are under way to better understand the physics and operation of the FEBIAD, using both theory and experiment. Recent measurements and simulations on the ISAC FEBIAD will be reported here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML080 Preliminary Results of a New High Brightness H Ion Source Developed at TRIUMF 4839
 
  • K. Jayamanna, F. Ames, Y. Bylinskii, J.Y. Cheng, M. Lovera, M. Minato
    TRIUMF, Vancouver, Canada
 
  This paper describes the preliminary results of a high brightness ion source developed at TRIUMF, which is capable of producing a negative hydrogen ion beam (H) of up to 5 mA of direct current. A 1.7 mm.mrad and 5 mm.mrad emittance(rms) is achieved for 500 uA and for 1 mA H-, respectively. Characteristics as well as a brief description regarding extraction issues of the source to date are also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)