Author: Blaskiewicz, M.
Paper Title Page
MOPMF011 Beam-Beam Issues With Two Interaction Points in eRHIC 102
 
  • Y. Luo, M. Blaskiewicz, A. He, C. Montag, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In this article, we study the beam-beam interaction related issues with two interaction points in the current eRHIC ring-ring design. We carried out strong-strong beam-beam simulation in a 2-d bunch intensity scan. We observed coherent beam-beam instability and emittance blowup with 2 collisions per turn at lower bunch intensities than the case with only 1 collision per turn. To deliver collisions to the two experiments simultaneously, we proposed a new bunch filling pattern to avoid 2 collisions per turn for any electron or proton bunch. We proved that the parasitic beam-beam effect with the new bunch filling pattern is negligible.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF012 Study of Crabbed Collision in eRHIC With a Combination of Strong-Strong and Weak-Strong Simulations 105
 
  • Y. Luo, G. Bassi, M. Blaskiewicz, W. Fischer, Y. Hao, C. Montag, V. Ptitsyn, V.V. Smaluk, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In the present design of the future electron-ion collider eRHIC at the Brookhaven National Laboratory, a crossing angle of 22~mrad between the electron and proton orbits at the interaction region is adopted. To compensate the geometric luminosity loss, a local compensation scheme with two sets of crab cavities for each beam is considered. In this article, we first carry out strong-strong beam-beam simulation to study possible coherent beam-beam instability. Under the assumption of no coherent beam-beam motion, we then carry out a weak-strong beam-beam simulation to determine the long-term stability of the proton beam with the equilibrium electron beam sizes extracted from the strong-strong beam-beam simulation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF016 Progress on RCS eRHIC Injector Design 115
 
  • V.H. Ranjbar, M. Blaskiewicz, J.M. Brennan, S.J. Brooks, D.M. Gassner, H.-C. Hseuh, I. Marneris, F. Méot, M.G. Minty, C. Montag, V. Ptitsyn, K.S. Smith, S. Tepikian, F.J. Willeke, H. Witte, B. P. Xiao, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • I.V. Pogorelov
    Tech-X, Boulder, Colorado, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We have refined the design for the Rapid Cycling Synchrotron (RCS) polarized electron injector for eRHIC. The newer design includes bypasses for the eRHIC detectors and definition of the lattice layout in the existing RHIC tunnel. Additionally, we provide more details on the RF, alignment and orbit control, and magnet specifications.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYGBD3 eRHIC Design Status 628
 
  • V. Ptitsyn, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, W. Guo, Y. Hao, A. Hershcovitch, H. Huang, W.A. Jackson, J. Kewisch, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, C. Montag, R.B. Palmer, B. Parker, S. Peggs, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, Long Island, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The electron-ion collider eRHIC aims at a luminosity around 1034cm-2sec-1, using strong cooling of the hadron beam. Since the required cooling techniques are not yet readily available, an initial version with a peak luminosity of 3*1033cm-2sec-1 is being developed that can later be outfitted with strong hadron cooling. We will report on the current design status and the envisioned path towards 1034cm-2sec-1 luminosity.
 
slides icon Slides TUYGBD3 [11.795 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBD3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF027 Impedance Modeling for eRHIC 1309
 
  • A. Blednykh, G. Bassi, M. Blaskiewicz, C. Hetzel, V. Ptitsyn, V.V. Smaluk, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the US DOE under contract number DE-SC0012704
The impedance budget for the eRHIC project is discussed at its earlier stage of development. As a first step, with the eRHIC lattice and beam parameters , we use the geometric impedances of the vacuum chamber components simulated for the NSLS-II project. The impedance budged will be updated next with more impedance data simulated for the optimized eRHIC vacuum components. It will allows us to keep track on the collective effects changes with more realistic components added to the ring.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF032 RF Conceptual Design of Normal Conducting Cavity for an eRHIC Rapid Cycling Synchrotron 1316
 
  • B. P. Xiao, M. Blaskiewicz, J.M. Brennan, D. Holmes, K.S. Smith, T. Xin, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
The Rapid Cycling Synchrotron (RCS) for the eRHIC Ring-Ring design will provide on energy injection (up to 18 GeV) of high charge, polarized electron bunches to the eRHIC electron storage ring. The RF system comprises a large number of 563MHz fundamental cavities, providing up to 45MV per turn. The cavities will operate in pulsed mode with <20% duty factor, at a repetition rate of 1 Hz. In this paper we report the conceptual RF design of the cavity.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF020 Pulsed Systems for eRHIC Beam Injection and Extraction 2410
 
  • W. Zhang, M. Blaskiewicz, A. Hershcovitch, C.J. Liaw, H. Lovelace III, M. Mapes, G.T. McIntyre, J.-L. Mi, C. Montag, C. Pai, V. Ptitsyn, J. Sandberg, N. Tsoupas, J.E. Tuozzolo, G.M. Wang, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The electron-ion collider eRHIC requires a variety of kickers and septa for injection and extraction of beams throughout the entire collider complex. We plan to use pulsed systems for beam injection and extraction in Electron RCS, Electron Storage Ring, and Hadron ring. In this paper, we describe the pulsed systems required for beam transfer in the eRHIC Ring-Ring Pre-conceptual Design. We will outline the parameter ranges, technology choices, and opportunities for research and development in pulsed power technology.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)