Author: Blednykh, A.
Paper Title Page
TUYGBD3 eRHIC Design Status 628
 
  • V. Ptitsyn, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, W. Guo, Y. Hao, A. Hershcovitch, H. Huang, W.A. Jackson, J. Kewisch, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, C. Montag, R.B. Palmer, B. Parker, S. Peggs, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, Long Island, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The electron-ion collider eRHIC aims at a luminosity around 1034cm-2sec-1, using strong cooling of the hadron beam. Since the required cooling techniques are not yet readily available, an initial version with a peak luminosity of 3*1033cm-2sec-1 is being developed that can later be outfitted with strong hadron cooling. We will report on the current design status and the envisioned path towards 1034cm-2sec-1 luminosity.
 
slides icon Slides TUYGBD3 [11.795 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBD3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF027 Impedance Modeling for eRHIC 1309
 
  • A. Blednykh, G. Bassi, M. Blaskiewicz, C. Hetzel, V. Ptitsyn, V.V. Smaluk, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the US DOE under contract number DE-SC0012704
The impedance budget for the eRHIC project is discussed at its earlier stage of development. As a first step, with the eRHIC lattice and beam parameters , we use the geometric impedances of the vacuum chamber components simulated for the NSLS-II project. The impedance budged will be updated next with more impedance data simulated for the optimized eRHIC vacuum components. It will allows us to keep track on the collective effects changes with more realistic components added to the ring.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXGBD1 The Upgrade of the Advanced Photon Source 2872
 
  • M. Borland, M. Abliz, N.D. Arnold, T.G. Berenc, J.M. Byrd, J.R. Calvey, J.A. Carter, J. Carwardine, H. Cease, Z.A. Conway, G. Decker, J.C. Dooling, L. Emery, J.D. Fuerst, K.C. Harkay, A.K. Jain, M.S. Jaski, P.S. Kallakuri, M.P. Kelly, S.H. Kim, R.M. Lill, R.R. Lindberg, J. Liu, Z. Liu, J. Nudell, C.A. Preissner, V. Sajaev, N. Sereno, X. Sun, Y.P. Sun, S. Veseli, J. Wang, U. Wienands, A. Xiao, C. Yao
    ANL, Argonne, Illinois, USA
  • A. Blednykh
    BNL, Upton, Long Island, New York, USA
 
  After decades of successful operation as a 7-GeV synchrotron radiation source, the Advanced Photon Source is pursing a major upgrade that involves replacement of the storage ring with an ultra-low emittance multi-bend achromat design. Using a seven-bend hybrid multi-bend achromat with reverse bending magnets gives a natural emittance of 42 pm operated at 6 GeV. The x-ray brightness is predicted to increase by more than two orders of magnitude. Challenges are many, but appear manageable based on thorough simulation and in light of the experience gained from world-wide operation of 3\text{rd}-generation light sources. The upgraded ring will operate in swap-out mode, which has allowed pushing the performance beyond the limits imposed by conventional operation.  
slides icon Slides THXGBD1 [14.689 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THXGBD1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)