Author: Bohlen, S.
Paper Title Page
TUPMF082 FLASHForward: DOOCS Control System for a Beam-Driven Plasma-Wakefield Acceleration Experiment 1460
  • S. Karstensen, S. Bohlen, J. Dale, M. Dinter, J.M. Müller, P. Niknejadi, J. Osterhoff, K. Poder, P. Pourmoussavi, V. Rybnikov, L. Schaper, B. Schmidt, J.-P. Schwinkendorf, B. Sheeran, G.E. Tauscher, S. Thiele, S. Wesch, P. Winkler
    DESY, Hamburg, Germany
  The FLASHForward project at DESY is an innovative beam-driven plasma-wakefield acceleration experiment integrated in the FLASH facility, aiming to accelerate electron beams to GeV energies over a few centimetres of ionised gas. These accelerated beams are tested for their capability to demonstrate exponential free-electron laser gain; achievable only through rigorous analysis of both the driver and witness beam's phase space. The thematic priority covered in here the control system part of FLASHForward. To be able to control, read out and save data from the diagnostics into DAQ, the DOOCS control system has been integrated into FLASH Forward. Laser beam control, over 70 cameras, ADCs, timing system and motorised stages are combined into the one DOOCS control system as well as vacuum and magnet controls. Micro TCA for Physics (MTCA.4) is the solid basic computing system, supported from high power workstations for camera read-out and normal Linux computers.  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)