Author: Burger, S.
Paper Title Page
WEPAF070 Commissioning of Beam Instrumentation at the CERN AWAKE Facility After Integration of the Electron Beam Line 1993
 
  • I. Gorgisyan, C. Bracco, S. Burger, S. Döbert, S.J. Gessner, E. Gschwendtner, L.K. Jensen, S. Jensen, S. Mazzoni, D. Medina, K. Pepitone, L. Søby, F.M. Velotti, M. Wendt
    CERN, Geneva, Switzerland
  • M. Cascella, S. Jolly, F. Keeble, M. Wing
    UCL, London, United Kingdom
  • V.A. Verzilov
    TRIUMF, Vancouver, Canada
 
  The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) is a project at CERN aiming to accelerate an electron bunch in a plasma wakefield driven by a proton bunch*. The plasma is induced in a 10 m long Rubidium vapour cell using a pulsed Ti:Sapphire laser, with the wakefield formed by a proton bunch from the CERN SPS. A 16 MeV electron bunch is simultaneously injected into the plasma cell to be accelerated by the wakefield to energies in GeV range over this short distance. After successful runs with the proton and laser beams, the electron beam line was installed and commissioned at the end of 2017 to produce and inject a suitable electron bunch into the plasma cell. To achieve the goals of the experiment, it is important to have reliable beam instrumentation measuring the various parameters of the proton, electron and laser beams such as transverse position, transverse profile as well as temporal synchronization. This contribution presents the status of the beam instrumentation in AWAKE, including the new instruments incorporated into the system for measurements with the electron beam line, and reports on the performance achieved during the AWAKE runs in 2017.
* Gschwendtner E., et al. "AWAKE, the Advanced Proton Driven Plasma Wakefield Experiment at CERN", NIM A 829 (2016)76-82
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF084 Commissioning the ELENA Beam Diagnostics Systems at CERN 2043
 
  • G. Tranquille, S. Burger, M. Gąsior, P. Grandemange, T.E. Levens, O. Marqversen, L. Søby
    CERN, Geneva, Switzerland
 
  The Extra Low ENergy Antiproton ring (ELENA) at CERN entered the commissioning phase in November 2016 using H ions and antiprotons to setup the machine at the different energy plateaus. The low intensities and energy of the ELENA beam generate very weak signals making beam diagnostics very challenging. With a circulating beam current of less than 1 µA and an energy where the beam annihilates in less than a few microns of matter, special care was taken during the design phase to ensure an optimal performance of these measurement devices once installed on the ring and transfer lines. A year on we present the performance of the various devices that have been deployed to measure the beam parameters from the extraction point of the Antiproton Decelerator (AD), through the ELENA ring and in the experimental lines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)