Author: Burrows, P.
Paper Title Page
MOPML010 Challenges and Status of Tuning Simulations for CLIC Traditional Beam Delivery System 412
 
  • R.M. Bodenstein, P. Burrows
    JAI, Oxford, United Kingdom
  • E. Marín
    CERN, Geneva, Switzerland
 
  The beam delivery system (BDS) for the 3 TeV version of the Compact Linear Collider (CLIC) has two main design types. One type is referred to as the local scheme, as it is approximately one kilometer shorter and corrects the chromaticity in both planes. The other type is referred to as the traditional scheme, and separates the chromaticity correction of each plane into different areas. The expectation early in the studies was that the traditional scheme would be easier to tune. This work will address the problems experienced in tuning simulations for the traditional BDS and describe the current state of these simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML050 A Massive Open Online Course on Particle Accelerators 512
 
  • N. Delerue, A. Faus-Golfe
    LAL, Orsay, France
  • M.E. Biagini
    INFN/LNF, Frascati (Roma), Italy
  • E. Bründermann, A.-S. Müller
    KIT, Eggenstein-Leopoldshafen, Germany
  • P. Burrows
    JAI, Oxford, United Kingdom
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • C. Darve, R.A. Yogi
    ESS, Lund, Sweden
  • V.V. Dmitriyeva, S.M. Polozov
    MEPhI, Moscow, Russia
  • J. Kvissberg
    Lund University, Lund, Sweden
  • P. Lebrun
    JUAS, Archamps, France
  • E. Métral, H. Schmickler, J. Toes
    CERN, Geneva, Switzerland
  • S.P. Møller
    ISA, Aarhus, Denmark
  • L. Rinolfi
    ESI, Archamps, France
  • A. Simonsson
    Stockholm University, Stockholm, Sweden
  • V.G. Vaccaro
    Naples University Federico II and INFN, Napoli, Italy
 
  Funding: European Union H2020 - ARIES Project
The TIARA (Test Infrastructure and Accelerator Research Area) project funded by the European Union 7th framework programme made a survey of provision of education and training in accelerator science in Europe highlighted the need for more training opportunities targeting undergraduate-level students. This need is now being addressed by the European Union H2020 project ARIES (Accelerator Research and Innovation for European Science and Society) via the preparation of a Massive Online Open Course (MOOC) on particle accelerator science and engineering. We present here the current status of this project, the main elements of the syllabus, how it will be delivered, and the schedule for providing the course.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZGBD5 Performance of Nanometre-Level Resolution Cavity Beam Position Monitors at ATF2 1212
 
  • T. Bromwich, D.R. Bett, N. Blaskovic Kraljevic, R.M. Bodenstein, P. Burrows, G.B. Christian, C. Perry, R.L. Ramjiawan
    JAI, Oxford, United Kingdom
  • S. Araki, A. Aryshev, T. Tauchi, N. Terunuma
    KEK, Ibaraki, Japan
  • P. Bambade, S. Wallon
    LAL, Orsay, France
  • S.W. Jang
    Korea University Sejong Campus, Sejong, Republic of Korea
 
  A system of three low-Q cavity beam position monitors (BPMs), installed in the interaction point (IP) region of the Accelerator Test Facility (ATF2) at KEK, has been designed and optimised for nanometre-level beam position resolution. The BPMs are used to provide an input to a low-latency, intra-train beam position feedback system deployed in single-pass, multi-bunch mode with the aim of demonstrating intra-train beam stabilisation on electron bunches of charge ~1 nC separated in time by 280 ns. In 2016 the BPM resolution was demonstrated to be below 50 nm using the raw measured vertical positions at the three BPMs. New results will be presented utilising integrated sampling of the raw waveforms, improved BPM alignment and modified cavities to demonstrate a vertical position resolution on the order of 20 nm.  
slides icon Slides TUZGBD5 [8.561 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUZGBD5  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL025 Development of a Low-Latency, High-Precision, Beam-Based Feedback System Based on Cavity BPMs at the KEK ATF2 2212
SUSPL058   use link to see paper's listing under its alternate paper code  
 
  • R.L. Ramjiawan, D.R. Bett, N. Blaskovic Kraljevic, R.M. Bodenstein, T. Bromwich, P. Burrows, G.B. Christian, C. Perry
    JAI, Oxford, United Kingdom
 
  A low-latency, intra-train feedback system employing cavity beam position monitors (BPMs) has been developed and tested at the Accelerator Test Facility (ATF2) at KEK. The feedback system can be operated with either position information from a single BPM to provide local beam stabilisation, or by using position information from two BPMs to stabilise the beam at an intermediate location. The correction is implemented using a stripline kicker and a custom power amplifier, with the feedback calculations being performed on a digital board built around a Field Programmable Gate Array (FPGA). The addition of indium sealing to the BPMs to increase the cavities' Q-values has led to improvements to the BPM system resolution, with current measurements of the resolution of order 20 nm. The feedback performance was tested with beam trains of two bunches, separated by 280 ns and with a charge of ~1 nC. For single- (two-)BPM feedback, stabilisation of the beam has been demonstrated to below 50 nm (41 nm). Ongoing work to improve the feedback performance further will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF047 Measurements and Impact of Stray Fields on the 380 GeV Design of CLIC 3072
 
  • C.G. Gohil, M.C.L. Buzio, E. Marín, D. Schulte
    CERN, Geneva, Switzerland
  • P. Burrows
    JAI, Oxford, United Kingdom
 
  Previous studies of the 3 TeV Compact Linear Collider (CLIC) design have shown a sensitivity to external dynamic magnetic fields (stray fields) on the nanoTesla level. In this paper the obtained tolerances for stray fields in the 380 GeV CLIC design are presented. In order to determine potential stray field sources, a measurement sensor has been acquired and used to investigate the magnetic contamination from technical equipment. The collected measurements, as well as details of the sensor, are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)