Author: Caselle, M.
Paper Title Page
WEPAL026 High Repetition Rate, Single-Shot Electro-Optical Monitoring of Longitudinal Electron Bunch Dynamics Using the Linear Array Detector KALYPSO 2216
  • G. Niehues, E. Blomley, M. Brosi, E. Bründermann, M. Caselle, S. Funkner, A.-S. Müller, M.J. Nasse, L. Rota, M. Schuh, P. Schönfeldt, M. Weber
    KIT, Eggenstein-Leopoldshafen, Germany
  • N. Hiller
    PSI, Villigen PSI, Switzerland
  Funding: This work is funded by the BMBF contract numbers: 05K13VKA and 05K16VKA.
High repetition rate diagnostics are required when detecting single-shot electro-optical (EO) bunch profiles. The KIT storage ring KARA (KArlsruhe Research Accelerator) is the first storage ring in the world that has a near-field EO bunch-profile monitor in operation. By imprinting longitudinal electron bunch profiles onto chirped laser pulses, single-shot detection is feasible. However, limitations of available detection systems are challenging: The constraints are either given by the repetition rate or the duration of the consecutive acquisitions. Two strategies can overcome these limitations: Based on the photonic time-stretch method, the ps laser pulses can be stretched to the ns range using km long fibers. The readout with a high-bandwidth oscilloscope then enables a single-shot detection at high repetition rates. The other strategy is the development of dedicated ultra-fast photodetector arrays allowing direct detection of the ps pulses at MHz repetition rates. We developed KALYPSO, a linear detector array with a DAQ allowing to record high data-rates over long time scales. Here, we present recent results of studies of the longitudinal electron bunch dynamics using KALYPSO.
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)