Author: Davidsaver, M.A.
Paper Title Page
THPAK049 Simulation Code Design for the Interpreted Language Using the Compiled Module 3327
  • K. Fukushima, M.A. Davidsaver, Z.Q. He, M. Ikegami, G. Shen, T. Yoshimoto, T. Zhang
    FRIB, East Lansing, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DESC0000661.
We are planning to use two types of the accelerator simulation codes for FRIB (Facility for Rare Isotope Beams). One is the linear envelope tracking code "FLAME" for fast simulations. FLAME can calculate the FRIB-linac beam envelope within an order of ms. This is useful in systematic surveys, wide range optimizations and so forth. This code, written in C++, was designed with Python interface from the beginning. On the other hand, "Advanced-IMPACT" is the particle tracking code dedicated for precise and realistic calculations, which can simulate the particle losses, nonlinear and space-charge effects. This code is refactored from the Fortran code IMPACT-Z developed in LBNL. Both codes provide the compiled modules for Python to support flexible inputs and direct outputs management in memory. In other words, they can be directly connected to the modern scientific tools through the Python interface without delay in the data transport. In addition, these modules can accomplish the interactive simulation processes without losing computational efficiency. We report the knowledges applicable for other accelerator simulation codes among those obtained through these developments and designs.
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THYGBE3 RF Controls for High-Q Cavities for the LCLS-II 2929
  • C. Serrano, K.S. Campbell, L.R. Doolittle, G. Huang, A. Ratti
    LBNL, Berkeley, California, USA
  • R. Bachimanchi, C. Hovater
    JLab, Newport News, Virginia, USA
  • A.L. Benwell, M. Boyes, G.W. Brown, D. Cha, G. Dalit, J.A. Diaz Cruz, J. Jones, R.S. Kelly, A. McCollough
    SLAC, Menlo Park, California, USA
  • B.E. Chase, E. Cullerton, J. Einstein-Curtis, J.P. Holzbauer, D.W. Klepec, Y.M. Pischalnikov, W. Schappert
    Fermilab, Batavia, Illinois, USA
  • L.R. Dalesio, M.A. Davidsaver
    Osprey DCS LLC, Ocean City, USA
  Funding: This work was supported by the LCLS-II Project and the U.S. Department of Energy, Contract n. DE-AC02-76SF00515.
The SLAC National Accelerator Laboratory is building LCLS-II, a new 4 GeV CW superconducting (SCRF) Linac as a major upgrade of the existing LCLS. The LCLS-II Low-Level Radio Frequency (LLRF) collaboration is a multi-lab effort within the Department of Energy (DOE) accelerator complex. The necessity of high longitudinal beam stability of LCLS-II imposes tight amplitude and phase stability requirements on the LLRF system (up to 0.01% in amplitude and 0.01° in phase RMS). This is the first time such requirements are expected of superconducting cavities operating in continuous-wave (CW) mode. Initial measurements on the Cryomodule test stands at partner labs have shown that the early production units are able to meet the extrapolated hardware requirements to achieve such levels of performance. A large effort is currently underway for system integration, Experimental Physics and Industrial Control System (EPICS) controls, transfer of knowledge from the partner labs to SLAC and the production and testing of 76 racks of LLRF equipment.
slides icon Slides THYGBE3 [14.383 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)