Author: Dziadosz, M.
Paper Title Page
TUPAF049 Analysis of Loss Signatures of Unidentified Falling Objects in the LHC 814
 
  • L. K. Grob, M. Dziadosz, E.B. Holzer, A. Lechner, B. Lindstrom, R. Schmidt, D. Wollmann, C. Zamantzas
    CERN, Geneva, Switzerland
 
  Particulates in the LHC beam pipes can interact with the proton beams and cause significant beam losses. The "UFOs" (unidentified falling objects) hypothesis describes a particle falling into the beam, creating particle showers, being ionized and repelled. Though the signals of the beam loss monitors support this, many aspects remain unknown. Neither the source of the dust nor the release mechanism from the beam pipe are understood. The same holds for the forces involved in the interaction and the observed UFO rate reduction over the years. These open questions are approached from different angles. Firstly, a new data analysis tool was established featuring advanced raw data selection and statistical analysis. Results of this analysis will be presented. Secondly, dust samples were extracted from LHC components and analyzed to gain insight into the size distribution and material composition of the contamination. The performed observations and analysis lead to a better modelling of the UFO events and helped to understand the physics involved. The validated UFO models will be crucial in view of the high luminosity upgrade of the LHC (HL-LHC) and the Future Circular Collider (FCC).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYGBD2 Results of UFO Dynamics Studies with Beam in the LHC 2914
 
  • B. Lindstrom, A. Apollonio, P. Bélanger, M. Dziadosz, A.A. Gorzawski, L. K. Grob, E.B. Holzer, A. Lechner, R. Schmidt, M. Valette, D. Valuch, D. Wollmann
    CERN, Geneva, Switzerland
 
  Micrometer sized particles entering the LHC beam (the so-called Unidentified Falling Objects or UFOs) are a known cause of localized beam losses since the beginning of high intensity beam operation, however the origin of these particles is not fully known. Their effect limits LHC availability by causing premature dumps due to excessive beam losses and occasionally even magnet quenches. This could become an important limitation for future accelerators such as the High Luminosity upgrade of the LHC (HL-LHC) and the Future Circular Collider (FCC). The dynamics of these UFOs was investigated in two dedicated experiments. In the first experiment, it was shown that the transverse movements of these particles can be studied by observing bunch-by-bunch losses from bunches with different horizontal and vertical emittances. In the second experiment, UFO-like events around the 16L2 interconnect in the LHC, which has seen intense UFO activity in 2017, were studied with the above method. This paper summarizes the results of both experiments.  
slides icon Slides THYGBD2 [1.361 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THYGBD2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)