Author: Fernandez Navarro, A.M.
Paper Title Page
THPAF062 Impact of Superconducting Magnet Protection Equipment on the Circulating Beam in HL-LHC 3115
  • M. Valette, L. Bortot, A.M. Fernandez Navarro, B. Lindstrom, M. Mentink, R. Schmidt, E. Stubberud, A.P. Verweij, D. Wollmann
    CERN, Geneva, Switzerland
  • E. Ravaioli
    LBNL, Berkeley, California, USA
  Funding: Work supported by the HL-LHC project.
The new superconducting quadrupole and dipole magnets for the High Luminosity LHC (HL-LHC) will rely on quench heaters or Coupling-Loss Induced Quench (CLIQ) units or a combination of both to protect the magnet coils in case of a quench. After the detection of a quench, the quench heater power supplies will discharge currents of several hundreds of amperes into the quench heater strips glued to the coils, and the CLIQ units will discharge an oscillating current in the order of 1~kA directly into the coils. These currents can have a significant effect on the circulating beam if the discharge occurs before the beam is dumped. In the HL-LHC inner triplet quadrupole magnets and 11 T dipole magnets, which will be installed in the collimation region dispersion suppressor, this effect will even be stronger due to the larger number of quench heaters and use of CLIQ units (triplet magnets only) as well as due to the greater value of beta function in comparison with the present LHC. In this paper, the expected effects of quench heater and CLIQ discharges on the circulating beam are summarized, and several mitigation methods are proposed and evaluated.
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)