Author: Fichera, C.
Paper Title Page
MOPMF046 Simulation of Hydrodynamic Tunneling Caused by High Energy Proton Beam in Copper through Coupling of FLUKA and Autodyn 204
  • Y.C. Nie, A. Bertarelli, F. Carra, C. Fichera, L.K. Mettler, R. Schmidt, D. Wollmann
    CERN, Geneva, Switzerland
  For machine protection of high-energy colliders, it is important to assess potential damages caused to accelerator components in case large number of bunches are lost at the same place. The numerical assessment requires an iterative execution of an energy-deposition code and a hydrodynamic code, since the hydrodynamic tunneling effect will likely play an important role in the beam-matter interactions. For proton accelerators at CERN and for the Future Circular Collider (FCC), case studies were performed, coupling FLUKA and BIG2. To compare different hydrocodes and not to rely only on BIG2, FLUKA and a commercial tool, Autodyn, have been used to perform these simulations. This paper reports a benchmarking study against a beam test performed at the HiRadMat (High-Radiation to Materials) facility using beams at 440 GeV from the Super Proton Synchrotron. Good agreement has been found between the simulation results and the test as well as previous simulations with FLUKA and BIG2, particularly in terms of penetration depth of the beam in copper. This makes the coupling of FLUKA and Autodyn an alternative solution to simulating the hydrodynamic tunneling. More case studies are planned for FCC and other high-beam-power accelerators.  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPMF071 Dynamic Testing and Characterization of Advanced Materials in a New Experiment at CERN HiRadMat Facility 2534
  • A. Bertarelli, C. Accettura, E. Berthomé, L. Bianchi, F. Carra, C. Fichera, M.I. Frankl, G. Gobbi, P. Grosclaude, M. Guinchard, A. Lechner, M. Pasquali, S. Redaelli, E. Rigutto, O. Sacristan De Frutos
    CERN, Geneva, Switzerland
  • Ph. Bolz, P. Simon
    GSI, Darmstadt, Germany
  • T.R. Furness
    University of Huddersfield, Huddersfield, United Kingdom
  • J. Guardia Valenzuela
    Universidad de Zaragoza, Zaragoza, Spain
  • P. Mollicone, M. Portelli
    UoM, Msida, Malta
  Funding: This work has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 730871.
An innovative and comprehensive experiment (named "Multimat") was successfully carried out at CERN HiRadMat facility on 18 different materials relevant for Collimators and Beam Intercepting Devices. Material samples, tested under high intensity proton pulses of 440 GeV/c, exceeding the energy density expected in HL-LHC, ranged from very light carbon foams to tungsten heavy alloys, including novel composites as graphite/carbides and metal/diamond without and with thin-film coatings. Experimental data were acquired relying on extensive integrated instrumentation (strain gauges, temperature sensors, radiation-hard camera) and on laser Doppler vibrometer. This allows investigating relatively unexplored and fundamental phenomena as dynamic strength, internal energy dispersion, nonlinearities due to inelasticity and inhomogeneity, strength and delamination of coatings and surfaces. By benchmarking sophisticated numerical simulations against these results, it is possible to establish or update material constitutive models, which are of paramount importance for the design of devices exposed to interaction with particle beams in high energy accelerators such as the HL-LHC or FCC-hh.
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)