Author: Garcia Alia, R.
Paper Title Page
MOPMF053 Observations, Analysis and Mitigation of Recurrent LHC Beam Dumps Caused by Fast Losses in Arc Half-Cell 16L2 228
  • J.M. Jimenez, D. Amorim, S. A. Antipov, G. Arduini, A. Bertarelli, N. Biancacci, B. Bradu, E. Bravin, G. Bregliozzi, K. Brodzinski, R. Bruce, X. Buffat, L.R. Carver, P. Chiggiato, S.D. Claudet, P. Collier, R. Garcia Alia, M. Giovannozzi, L. K. Grob, E.B. Holzer, W. Höfle, G. Iadarola, G. Kotzian, A. Lechner, T.E. Levens, B. Lindstrom, T. Medvedeva, A. Milanese, D. Mirarchi, E. Métral, D. Perini, S. Redaelli, G. Rumolo, B. Salvant, R. Schmidt, M. Valette, D. Valuch, J. Wenninger, D. Wollmann, C. Yin Vallgren, C. Zamantzas, M. Zerlauth
    CERN, Geneva, Switzerland
  • D. Amorim
    Université Grenoble Alpes, Grenoble, France
  • A.A. Gorzawski
    University of Manchester, Manchester, United Kingdom
  • L. Mether
    EPFL, Lausanne, Switzerland
  Recurrent beam dumps significantly perturbed the operation of the CERN LHC in the summer months of 2017, especially in August. These unexpected beam dumps were triggered by fast beam losses that built up in the cryogenic beam vacuum at the half-cell 16 left of LHC-IP2 and were detected either at that location but mainly in the collimation insertions. This contribution details the experimental observables (beam losses, coherent instabilities, heat load to cryogenic system, vacuum signals), the extent of the understanding of the beam loss and instability mechanisms and the mitigation steps and new settings that allowed recovering the luminosity performance of the LHC for the rest of the Run.  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPAF082 A Systematic Analysis of the Prompt Dose Distribution at the Large Hadron Collider 2036
  • O. Stein, K. Bilko, M. Brugger, S. Danzeca, D. Di Francesca, R. Garcia Alia, Y. Kadi, G. Li Vecchi, C. Martinella
    CERN, Geneva, Switzerland
  During the operation of the Large Hadron Collider (LHC) the continuous particle losses create a mixed particle radiation field in the LHC tunnel and the adjacent caverns. Exposed electronics and accelerator components show dose dependent accelerated aging effects. In order to achieve an optimal lifetime associated to radiation damage, the position of the equipment is chosen in dependency of the amplitude of the radiation fields. Based on the continuous analysis of the data from more than 3900 ionisation chamber beam loss monitors the evolution of the radiation levels is monitored during the accelerator operation. Normalising the radiation fields with either the integrated luminosity or the integrated intensities allows extrapolating the radiation levels of future accelerator operation. In this paper, the general radiation levels in the arcs and the insertion regions at the LHC and their evolution will be presented. The changes in the prompt dose distribution along the LHC between the operation in 2016 and 2017 will be discussed. The impact of different accelerator settings on the local dose distribution will be addressed as well.  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPMF014 First Experiments at the CLEAR User Facility 4066
  • R. Corsini, A. Curcio, S. Curt, S. Döbert, W. Farabolini, D. Gamba, R. Garcia Alia, T. Lefèvre, G. McMonagle, P.K. Skowroński, M. Tali, F. Tecker
    CERN, Geneva, Switzerland
  • E. Adli, C.A. Lindstrøm, K.N. Sjobak
    University of Oslo, Oslo, Norway
  • R.M. Jones, A. Lagzda
    UMAN, Manchester, United Kingdom
  The new "CERN Linear Electron Accelerator for Research" (CLEAR) facility at CERN started its operation in fall 2017. CLEAR results from the conversion of the CALIFES beam line of the former CLIC Test Facility (CTF3) into a new testbed for general accelerator R&D and component studies for existing and possible future accelerator applications. CLEAR can provide a stable and reliable electron beam from 60 to 220 MeV in single or multi bunch configuration at 1.5 GHz. The experimental program includes studies for high gradient acceleration methods, e.g. for CLIC X-band and plasma technology, prototyping and validation of accelerator components, e.g. for the HL-LHC upgrade, and irradiation test capabilities for characterization of electronic components and for medical applications. An overview of the facility capabilities and a summary of the latest results will be presented.  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)