Author: Gray, F.E.
Paper Title Page
FRXGBE2 Muon Beam Dynamics and Spin Dynamics in the g-2 Storage Ring 5029
  • D. L. Rubin, A.T. Chapelain
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • S. Charity, J. Price
    The University of Liverpool, Liverpool, United Kingdom
  • J.D. Crnkovic, W. Morse, V. Tishchenko
    BNL, Upton, Long Island, New York, USA
  • F.E. Gray
    Regis University, Denver, USA
  • J. E. Mott
    BUphy, Boston, Massachusetts, USA
  • W. Wu
    UMiss, University, Mississippi, USA
  Funding: This work was supported in part by the U.S. Department of Energy DOE HEP DE-SC0008037
The goal of the new g-2 experiment at fermilab is a measurement of the anomalous magnetic moment of the muon, with uncertainty of less than 140 ppb. The experimental method is to store a beam of polarized muons in a storage ring with pure vertical dipole field and electrostatic focusing, and to measure the precession frequency. Control of the systematics depends on unprecedented knowledge of the details of the phase space of the muon distribution. That knowledge is derived from direct measurements with scintillating fiber detectors that are inserted into the muon beam for diagnostic measurements, traceback straw tube tracking chambers, as well as the calorimeters that measure energy, time and position of the decay positrons. The interpretation of the measurements depends on a detailed model of the storage ring guide field. This invited talk presents results of studies of the distribution from the commissioning run of the experiment.
slides icon Slides FRXGBE2 [12.815 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)