Author: Gulliford, C.M.
Paper Title Page
TUYGBE2 CBETA, the 4-Turn ERL with SRF and Single Return Loop 635
 
  • G.H. Hoffstaetter, N. Banerjee, J. Barley, A.C. Bartnik, I.V. Bazarov, D.C. Burke, J.A. Crittenden, L. Cultrera, J. Dobbins, S.J. Full, F. Furuta, R.E. Gallagher, M. Ge, C.M. Gulliford, B.K. Heltsley, R.P.K. Kaplan, V.O. Kostroun, Y. Li, M. Liepe, W. Lou, C.E. Mayes, J.R. Patterson, P. Quigley, D.M. Sabol, D. Sagan, J. Sears, C.H. Shore, E.N. Smith, K.W. Smolenski, V. Veshcherevich, D. Widger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg, S.J. Brooks, C. Liu, G.J. Mahler, F. Méot, R.J. Michnoff, M.G. Minty, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, H. Witte
    BNL, Upton, Long Island, New York, USA
  • D. Douglas
    JLab, Newport News, Virginia, USA
  • J.K. Jones
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • D. Jusic
    Cornell University, Ithaca, New York, USA
  • D.J. Kelliher
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • B.C. Kuske, M. McAteer, J. Völker
    HZB, Berlin, Germany
 
  Funding: Supported by NSF award DMR-0807731, DOE grant DE-AC02-76SF00515, and NYSERDA.
A collaboration between Cornell University and Brookhaven National Laboratory has designed and is constructing CBETA, the Cornell-BNL ERL Test Accelerator on the Cornell campus. The ERL technology that has been prototyped at Cornell for many years is being used for this new accelerator, including a DC electron source and an SRF injector Linac with world-record current and normalized brightness in a bunch train, a high-current linac cryomodule optimized for ERLs, a high-power beam stop, and several diagnostics tools for high-current and high-brightness beams. BNL has designed multi-turn ERLs for several purpose, dominantly for the electron beam of eRHIC, its Electron Ion Collider (EIC) project and for the associated fast electron cooling system. Also in JLEIC, the EIC designed at JLAB, an ERL is envisioned to be used for electron cooling. The number of transport lines in an ERL is minimized by using return arcs that are comprised of a Fixed Field Alternating-gradient (FFA) design. This technique will be tested in CBETA, which has a single return for the 4-beam energies with strongly-focusing permanent magnets of Halbach type. The high-brightness beam with 150~MeV and up to 40~mA will have applications beyond accelerator research, in industry, in nuclear physics, and in X-ray science. Low current electron beam has already been sent through the most relevant parts of CBETA, from the DC gun through both cryomodules, through one of the 8 similar separator lines, and through one of the 27 similar FFA structures. Further construction is envisioned to lead to a commissioning start for the full system early in 2019.
 
slides icon Slides TUYGBE2 [17.348 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBE2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML028 Photocathodes R&D for High Brightness and Highly Polarized Electron Beams at Cornell University 1601
 
  • L. Cultrera, J. Bae, A.C. Bartnik, I.V. Bazarov, R. Doane, A. Galdi, C.M. Gulliford, W. H. Li, J.M. Maxson, S.A. McBride, T.P. Moore, C. M. Pierce, C. Xu
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Cornell University is a leader in the development of photocathode materials for the production of high brightness electron beam sources for applications in large scale accelerators and small scale electron scattering experiments. During the last year we have also included Mott polarimetry to investigate long lifetime spin-polarized photocathodes materials. Another thrust of our laboratory is the exploration of ultra low emittance photocathodes at cryogenic temperatures, for which we are building a novel LHe cryogenic electron source. We will review updates from our lab across each of these areas.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML029 Novel Photocathode Geometry Optimization: Field Enhancing Photoemission Tips 1605
 
  • W. H. Li, I.V. Bazarov, C.M. Gulliford, J.M. Maxson
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was supported by the U.S. National Science Foundation under award PHY-1549132, the Center for Bright Beams.
For photoemission sources, the extraction electric field defines the maximum achievable emission current, and hence the maximum achievable beam brightness. Recently, interest has been growing in studying photocathodes with non-flat geometries to produce local field enhancements in excess of what can be achieved with large area flat cathodes. However, such geometries cause image charge effects which require self-consistent field solvers to correctly simulate. We present a novel simulation framework which combines a full particle in cell field solver (WARP) with a fast adaptive mesh space charge particle tracker (GPT) and a parallel multi-objective genetic optimizer to explore photocathode geometries for ultra high brightnesses. A first application of this technique is also shown, namely the use of field enhanced photoemission tips to create bright beams for ultra-fast electron diffraction.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF019 Initial Performance of the Magnet System in the Splitter/Combiner Section of the Cornell-Brookhaven Energy-Recovery Linac Test Accelerator 2986
 
  • J.A. Crittenden, A.C. Bartnik, R.M. Bass, D.C. Burke, J. Dobbins, C.M. Gulliford, Y. Li, D. Sagan, K.W. Smolenski, Turco, J. Turco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg
    BNL, Upton, Long Island, New York, USA
  • D. Jusic
    Cornell University, Ithaca, New York, USA
 
  Funding: This work is supported by NSF award DMR-0807731, DOE grant DE-AC02- 76SF00515, and New York State Energy Research and Development Authority.
The Cornell-Brookhaven Energy-recovery Linac Test Accelerator is a four-pass, 150-MeV electron accelerator with a six-cell 1.3 GHz superconducting-RF linear accelerator and a fixed-field alternating-gradient (FFAG) return loop made up of Halbach-style quadrupole magnets. The optics matching between the linear accelerator and the return loop is achieved with a conventional magnet system comprised of 50 dipole magnets and 64 quadrupole magnets in four beamlines at each end of the linac. The 42-, 78-, 114- and 150-MeV electron beams are separated into independent vacuum chambers in order to allow for the path-length adjustment required by energy recovery. We report on the first beam tests of the initial installation of the splitter/combiner section at the exit of the linac. The vacuum system of the 42-MeV S1 line was installed during the first week of April. Nine dipole and four quadrupole magnets were installed and surveyed into position the following week, and the water cooling system was commissioned. A 6-MeV beam passed through the line on April~11 with no need for adjusting pre-set magnet excitation currents. One week later, time-of-flight measurements were used to calibrate and phase the individual superconducting RF cavities. The S1 magnet settings were then scaled up to achieve 5-cavity, 42-MeV operation through the first nine FFAG permanent-magnet quadrupoles. This initial Fractional Arc Test will conclude on May 18, when the installation of the remaining seven splitter/combiner lines and the return loop will begin. CBETA operations are scheduled to begin in early 2019.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF021 Start to End Simulation of the CBETA Energy Recovery Linac 2993
 
  • W. Lou, A.C. Bartnik, J.A. Crittenden, C.M. Gulliford, G.H. Hoffstaetter, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg, S.J. Brooks, F. Méot, D. Trbojevic, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • C.E. Mayes
    SLAC, Menlo Park, California, USA
 
  Funding: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
CBETA is an energy recovery linac accelerating from 6 MeV to 150 MeV in four linac passes, using a single return line accepting all energies from 42 MeV to 150 MeV. We simulate a 6-dimensional particle distribution from the injector through the end of the dump line. Space charge forces are taken into account at the low energy stages. We compare results using field maps to those using simpler magnet models. We introduce random and systematic magnet errors to the lattice, apply an orbit correction algorithm, and study the impact on the beam distribution.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF023 The Beam Optics of the FFAG Cell of the CBETA ERL Accelerator 3000
 
  • W. Lou, A.C. Bartnik, J.A. Crittenden, C.M. Gulliford, G.H. Hoffstaetter, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg, S.J. Brooks, F. Méot, D. Trbojevic, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • C.E. Mayes
    SLAC, Menlo Park, California, USA
 
  Funding: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Cornell-Brookhaven Energy Recovery Linac Test Accelerator now under construction will accelerate electrons from 6 MeV to 150 MeV in four linac passes, using a single return line accepting all energies from 42 to 150 MeV. We describe the optical design of the machine, with emphasis on recent updates. We explain how we choose parameters for the wide energy acceptance return arc, taking into account 3D field maps generated from magnet designs. We give the final machine parameters resulting from iterations between desired lattice properties and magnet design. We modified the optics to improve the periodicity of the return arc near its ends and to create adequate space for vacuum hardware. The return arc is connected to the linac with splitter lines that serve to match the optics for each beam energy. We describe how matching conditions were chosen for the splitter lines and how we use them to control longitudinal motion. We simulate the injection and low energy extraction systems including space charge effects, matching the beam properties to the optical parameters of the rest of the machine.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF024 Understanding and Compensating Emittance Diluting Effects in Highly Optimized Ultrafast Electron Diffraction Beamlines 3004
 
  • C. M. Pierce, I.V. Bazarov, C.M. Gulliford, J.M. Maxson
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • S. Baturin
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
  • M.A. Gordon, Y.K. Kim
    University of Chicago, Chicago, Illinois, USA
 
  Funding: This work was supported by the Center for Bright Beams, NSF PHY-1549132 and Department of Energy grant DE-SC0014338.
The application of Multiobjective Genetic Algorithm optimization (MOGA) to photoemission based ultrafast electron diffraction (UED) beamlines featuring extremely low cathode mean transverse energies has lead to designs with emittances as low as 1 nm for sub-picosecond bunches with 105 electrons*. Analysis of these results shows significant emittance growth during transport: with emittance dilution as high as a factor of 200-4000% for various designs and optics settings. In this study we quantify and model the individual sources of emittance growth (slice mismatches and space charge), and explore the use of the core emittance as a strong invariant.
C. Gulliford, A. Bartnik, and I. Bazarov. Multi-
objective optimizations of a novel cryocooled dc gun based
UED beam line. Phys. Rev. Ac-
celerators and Beams, 19(9):093402, 2016.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)