Author: Hara, T.
Paper Title Page
WEXGBD2 Pulse-by-Pulse Multi-XFEL Beamline Operation with Ultra-Short Laser Pulses 1740
  • T. Hara, T. Inagaki, H. Maesaka, Y. Otake, H. Tanaka, K. Togawa
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • K. Fukami
    JASRI/SPring-8, Hyogo-ken, Japan
  • T. Hasegawa, O. Morimoto, S. Nakazawa, M. Yoshioka
    SES, Hyogo-pref., Japan
  • H. Kawaguchi, Y. Kawaguchi
    Nichicon (Kusatsu) Corporation, Shiga, Japan
  • C. Kondo
    JASRI, Hyogo, Japan
  The parallel operation of multiple beamlines is an important issue to expand the opportunity of user experiments for linac based FELs. At SACLA, the parallel operation of three beamlines, BL1~3, has been open to user experiments since September 2017. BL1 is a soft x-ray beamline driven by a dedicated accelerator, which is a former SCSS linac, and BL2 and 3 are XFEL beamlines, which share the electron beam from the SACLA main linac. In the parallel operation, a kicker magnet with 10 ppm stability (peak-to-peak) switches the two XFEL beamlines at 60 Hz from pulse to pulse. To ensure wide spectral tunability and optimize the laser performance, the energies and lengths of the electron bunches are independently adjusted for the two beamlines according to user experiments. Since the electron bunch of SACLA has typically 10~15 fs (FWHM) in length and its peak current exceeds 10 kA, the CSR effect at a dogleg beam transport to BL2 is quite significant. In order to suppress the CSR effects, an isochronous and achromatic lattice based on two DBA structures was introduced. In this talk, the multiple XFEL beamline operation and achieved laser performance are presented.  
slides icon Slides WEXGBD2 [9.712 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)