01 Circular and Linear Colliders
A03 Linear Colliders
Paper Title Page
MOPMF055 Update of the CLIC Positron Source 236
 
  • Y. Han, L. Ma
    SDU, Shandong, People's Republic of China
  • C. Bayar
    Ankara University, Faculty of Sciences, Ankara, Turkey
  • S. Döbert, A. Latina, D. Schulte
    CERN, Geneva, Switzerland
 
  The baseline positron source of CLIC has been optimised for the 3 TeV c.o.m. energy. Now the first stage of the CLIC is proposed to be at 380 GeV. Recently, the positron transmission efficiency from the tungsten target to the damping rings injection has been improved by 2.5 times. This opened the possibility for an optimisation of the whole positron source, comprising the injector linacs, aimed at improving its performance and its overall power efficiency. In this paper the key parameters of the positron source, which include the current and the energy of the primary electron beam, the thickness of the crystal and amorphous tungsten targets, the distance between the two targets, the adiabatic matching device (AMD) and pre-injector linacs, are optimized to improve the overall power efficiency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF077 A Design Study of the Electron-driven ILC Positron Source Including Beam Loading Effect 311
SUSPF003   use link to see paper's listing under its alternate paper code  
 
  • H. Nagoshi, M. Kuriki
    HU/AdSM, Higashi-Hiroshima, Japan
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
  • K. Negishi
    Iwate University, Morioka, Iwate, Japan
  • T. Omori, M. Satoh, Y. Seimiya, J. Urakawa
    KEK, Ibaraki, Japan
  • Y. Sumitomo
    LEBRA, Funabashi, Japan
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
 
  The International Linear Collider (ILC) is a next-generation accelerator for high-energy physics to study the Higgs and top sector in the Standard Model, and new physics such as supersymmetry and dark matter. ILC positron source based on Electron-driven method has been proposed as a reliable technical backup. In this article, we report the design study of the positron source based on the off-the-shelf RF components. The positron is generated and accelerated in a multi-bunch format. To compensate the energy variation by the transient beam loading effect, we employ AM (Amplitude Modulation) technique and the results were 16.60 ± 0.14 MV (peak-to-peak) for L-band 2m cavity driven by 22.5 MW power and 25.76 ± 0.19 MV (peak-to-peak) for S-band 2m ac-celerator driven by 36 MW power with 0.78 A beam load-ing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML010 Challenges and Status of Tuning Simulations for CLIC Traditional Beam Delivery System 412
 
  • R.M. Bodenstein, P. Burrows
    JAI, Oxford, United Kingdom
  • E. Marín
    CERN, Geneva, Switzerland
 
  The beam delivery system (BDS) for the 3 TeV version of the Compact Linear Collider (CLIC) has two main design types. One type is referred to as the local scheme, as it is approximately one kilometer shorter and corrects the chromaticity in both planes. The other type is referred to as the traditional scheme, and separates the chromaticity correction of each plane into different areas. The expectation early in the studies was that the traditional scheme would be easier to tune. This work will address the problems experienced in tuning simulations for the traditional BDS and describe the current state of these simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)