01 Circular and Linear Colliders
A09 Muon Accelerators and Neutrino Factories
Paper Title Page
MOPMF065 LHC- and FCC-Based Muon Colliders 273
 
  • F. Zimmermann
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the European Commission under the HORIZON 2020 project ARIES, grant agreement no. 730871.
In recent years, three schemes for producing low-emittance muon beams have been proposed: (1) e+e annihilation above threshold using a positron storage ring with a thin target [M. Boscolo, P. Raimondi et al.], (2) laser/FEL-Compton back-scattering off high-energy proton beams circulating in the LHC or FCC-hh [L. Serafini et al.], (3) the Gamma factory concept, where partially stripped heavy ions collide with a laser pulse to directly generating muons [W. Krasny]. The Gamma factory would also generate copious amounts of positrons which could in turn be used as source for option (1). On the other hand the top-up booster of the FCC-ee design would be an outstanding e+ storage ring, at the right beam energy, around 45 GeV. After rapid acceleration the muons, produced in one of the three ways, could be collided in machines like the SPS, LHC or FCC-hh. Possible collider layouts are suggested.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF087 Muon Accumulator Ring Requirements for a Low Emittance Muon Collider from Positrons on Target 330
 
  • M. Boscolo, M. Antonelli, O.R. Blanco-García, S. Guiducci
    INFN/LNF, Frascati (Roma), Italy
  • F. Collamati
    INFN-Roma1, Rome, Italy
  • L. Keller
    SLAC, Menlo Park, California, USA
  • S.M. Liuzzo, P. Raimondi
    ESRF, Grenoble, France
  • D. Schulte
    CERN, Geneva, Switzerland
 
  Very low emittance muon beams can be produced by direct annihilation of about 45~GeV positrons on atomic electrons in a thin target. With such a muon beam source, a mu+mu- collider can be designed in the multi-TeV range at very high luminosities. In this scheme two muon accumulator rings are foreseen to recollect the muon bunches that will be injected in the collider. We present in this paper the first consideration of the muon accumulator rings. Realistic muon beam emittance and energy spread coming from the muon target are described. Constraints on the accumulator ring requirements are derived.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)