01 Circular and Linear Colliders
A18 Energy Recovery Linacs
Paper Title Page
MOPMK015 Development of a Bunched-Beam Electron Cooler for the Jefferson Lab Electron-Ion Collider 382
  • S.V. Benson, Y.S. Derbenev, D. Douglas, F.E. Hannon, A. Hutton, R. Li, R.A. Rimmer, Y. Roblin, C. Tennant, H. Wang, H. Zhang, Y. Zhang
    JLab, Newport News, Virginia, USA
  Funding: Authored by Jefferson Science Associates, LLC under U.S.DOE Contract No. DE-AC05-06OR23177.
Jefferson Lab is in the process of designing an electron-ion collider with unprecedented luminosity at a 65 GeV center-of-mass energy. This luminosity relies on ion cooling in both the booster and the storage ring of the accelerator complex. The cooling in the booster will use a conventional DC cooler similar to the one at COSY. The high-energy storage ring, operating at a momentum of up to 100 GeV/nucleon, requires novel use of bunched-beam cooling. We will present a new design for a Circulator Cooler Ring for bunched-beam electron cooling. This requires the generation and transport of very high-charge magnetized bunches, acceleration of the bunches in an energy recovery linac, and transfer of these bunches to a circulating ring that passes the bunches 11 times through the proton or ion beam inside cooling solenoids. This design requires the suppression of the effects of space charge and coherent synchrotron radiation using shielding and RF compensation.
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMK015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)