02 Photon Sources and Electron Accelerators
A05 Synchrotron Radiation Facilities
Paper Title Page
TUPMF003 Dynamic Tuning of the APS-U Booster 5-cell Cavities 1251
 
  • G.J. Waldschmidt, M. Abliz, T.G. Berenc, D. Horan, U. Wienands
    ANL, Argonne, Illinois, USA
 
  The booster synchrotron for the APS-U is being upgraded to accommodate high-charge bunches, up to 20 nC, for extraction into the MBA lattice. The booster is required to operate at 85% efficiency in order to achieve bunch swap-out into the storage ring. In order to compensate for significant beam-loading effects as well as support a frequency ramp to achieve higher efficiency, a ferrite tuner is being considered to dynamically adjust the cavity frequency. A tuner design will be presented that spans 60 kHz and utilizes a low-loss YIG garnet similar to that used in the Recycler Ring at Fermilab.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF011 Calculation of Expected Orbit Motion Due to Girder Resonant Vibration at the APS Upgrade 1269
 
  • V. Sajaev, Z. Liu, J. Nudell, C.A. Preissner
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source (APS) is pursuing an upgrade to the storage ring that will provide electron beam with extremely low emittance. To allow users to take advantage of this small beam size, the beam orbit motion has to be kept stable to within a fraction of the beam size. To keep the beam orbit stable on a sub-micron level, one needs to carefully design magnet supports/girders so that the ground motion does not lead to excessive orbit motion due to resonant modes of magnet supports. In this paper, we will describe the process of calculating the expected orbit motion due to girder resonant vibration. First, we will present the simulation results for the girder resonant modes, then we will calculate the orbit amplification factors for the girder deformation modes, then calculate the expected orbit motion using measured ground motion spectrum. This process can be used to evaluate the design of the magnet supports.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF012 Determination of the Ground Motion Orbit Amplification Factors Dependence on the Frequency for the APS Upgrade Storage Ring 1272
 
  • V. Sajaev, C.A. Preissner
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source (APS) is pursuing an upgrade to the storage ring that will provide electron beam with extremely low emittance. To allow users to take advantage of this small beam size, the beam orbit motion has to be kept stable to within a fraction of the beam size, which translates to sub-micron orbit stability requirement. Ground motion provides significant contribution to the overall expected beam motion, especially at lower frequencies where the ground motion has larger amplitudes. At the same time, the lattice amplification factors reduce when the ground motion becomes coherent at low frequencies. In this paper, we will present simulation of the lattice amplification factor dependence on the ground motion coherence length and show results of the ground motion coherence measurements at APS. After that, we will determine the lattice amplification factors dependence on the ground motion frequency, that can be used to calculate the expected effect of the ground motion on the orbit stability.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF013 Optimizations of Nonlinear Beam Dynamics Performance on APS-U Lattice 1276
 
  • Y.P. Sun, M. Borland
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
For next-generation storage ring light sources, such as the Advanced Photon Source (APS) Multi-Bend Achromat (MBA) upgrade, the strong nonlinearities introduced by the strong chromaticity sextupoles plus the small physical apertures make it challenging to achieve large dynamic acceptance (DA) and long Touschek lifetime, even when using the on-axis swap-out injection scheme. Several different methods have been explored for nonlinear dynamics optimization. The optimization objectives variously include the chromaticities up to third order, resonance driving and detuning terms, on- and off-momentum dynamic acceptance, chromatic and geometric tune footprint, local momentum acceptance (LMA), variation of betatron oscillation invariant, Touschek lifetime, etc. In addition, optimization can be performed without errors, with selected random errors, and with sets of errors that reflect post-commissioning conditions. In this paper, these different optimization methods are compared for the nonlinear beam dynamics performance of the Advanced Photon Source upgrade (APS-U) lattice, in terms of the dynamic acceptance, local momentum acceptance, and other performance measures. The impact from different error sources is also studied.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF014 Synchrotron Accumulation on Off-Energy Closed-Orbit with Anti-Septum or Nonlinear Kicker 1280
 
  • Y.P. Sun
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Off-axis accumulation on off-energy closed-orbit (so-called synchrotron injection/accumulation) was studied and implemented in the 1990s for LEP at CERN. The idea of using pulsed multipole injection on off-energy closed-orbit was first proposed in 2014 and then developed for Swiss Light Source (SLS) upgrade in 2015. In 2017, the anti-septum was proposed for SLS upgrade injection. In this paper, two similar injection schemes are proposed which combine off-axis accumulation on off-energy closed-orbit (no betatron oscillations), with the anti-septum or pulsed nonlinear kicker schemes. Preliminary lattice solutions are developed for Advanced Photon Source upgrade (APS-U) where a special injection straight (with length of 5.8 m) is designed with horizontal dispersion of 0.15m. The impact on the ring emittance is relatively small. The injection elements are all placed in this injection straight, including 1 thin septum and 3 slow kickers (or 1 pulsed nonlinear kicker). No fast kickers are needed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF022 Electron Beam Scanning in the Delta-Type Undulators for Sirius 1300
 
  • A. B. da Cruz, L. Liu
    LNLS, Campinas, Brazil
 
  We report on simulation studies to analyze the possibility of scanning the electron beam, and not scanning the sample, in CDI experiments using a Delta-Type undulator in the 3GeV Sirius electron storage ring presently under construction at LNLS. This would allow much faster scans in diffraction limited storage rings such as Sirius. We study displaced beam trajectories through the undulators and analyze the effects on the emitted radiation. It is possible to show that displacements on the order of ± 500 micrometers around the center will introduce variations in the radiation spectrum that are less that 1 per cent and thus acceptable for Coherent Diffraction Imaging experiments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF030 Operation and Performance of NSLS-II 1312
 
  • G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  NSLS-II facility hosts 23 operating beamlines with 2 more under commissioning. The radiation sources varies, including damping wiggler, IVU, EPU, 3PW, and bending magnets. Over the past year, the storage ring performance continuously improved, including frequency feedback and photon local feedback. Machine reliability reached 96.9% for 4500 hrs operation with beam current upto 350 mA. Beam orbit short and long term stability has been significantly improved. Operation beam emittance were optimized with beamlines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF036 Top Off of NSLS-II with Inefficient Injector 1327
 
  • R.P. Fliller, A.A. Derbenev, V.V. Smaluk, X. Yang
    BNL, Upton, Long Island, New York, USA
 
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
The NSLS-II is a 3 GeV storage with a full energy injector capable of top off injection. The injector consists of a 200 MeV linac injecting a 3 GeV booster. Recent operational events have caused us to investigate 100 MeV injection into the booster. As the booster was not designed for injection at this low energy, beam loss is observed with this low energy booster injection. This beam loss not only results of overall charge loss from the train, but a change in the overall charge distribution in the bunch train. In this paper we discuss the performance of injecting into the storage ring with the inefficient charge transfer through the injector. The changes to the top off method are discussed, as well as the achieved storage ring current stability and fill pattern.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF038 Design Considerations for an Ultralow Emittance Storage Ring for the Canadian Light Source 1334
 
  • L.O. Dallin
    CLS, Saskatoon, Saskatchewan, Canada
 
  Demands from light source scientists for more brilliant xray beams have resulted in the emergence of 4th generation storage rings. These demands include photon beams that are highly focussed and beams with high transverse coherence. Both these requirements are achieved with ultralow electron beam emittance. The practical development of the multi-bend achromat (MBA) concept by MAX IV has spurred many synchrotron light sources around the world to develop similar machines. For existing facilities two options are available: upgrading existing machines or building a new structure. The Canadian Light Source (CLS) has explored both options and has determined a new storage ring is required. Several design options for a 3.0 GeV ring have been developed. Best results are achieved when tracking is used to optimize the phase advance through the MBA structure to reduce the impact of the sextupoles on the dynamic aperture. Structures where no geometric sextupoles are required have been achieved while producing ultralow emittances.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF046 The Injection and Extraction Design of the Booster for the HEPS Project 1356
 
  • Y.Y. Guo, J. Chen, Z. Duan, Y. Jiao, Y.M. Peng, G. Xu
    IHEP, Beijing, People's Republic of China
 
  The HEPS booster is a 1Hz electron synchrotron. It accelerates electron bunches from 500 MeV to final energy of 6 GeV. The vertical scheme was chosen for the injection and extraction system of the booster. What's more, an injection system from storage ring is required. The layout of the injection and extraction system were introduced in this paper. The parameter optimization and other considerations are presented in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF049 Evolution of the Lattice Design for the High Energy Photon Source 1363
 
  • G. Xu, S.Y. Chen, Y. Jiao, J.L. Li, Y.M. Peng, Q. Qin, J.Q. Wang, C.H. Yu
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS) is a high-energy, ultralow-emittance, kilometer-scale storage ring light source to be built in China. The HEPS lattice design has been started since 2008. In this paper we will review the evolution of the HEPS lattice design over the past ten years, focusing mainly on the linear optics design and nonlinear optimization.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF050 DA Optimization Experiences in the Heps Lattice Design 1367
 
  • Y. Jiao, G. Xu
    IHEP, Beijing, People's Republic of China
 
  In the past decade, the so-called diffraction-limited storage ring (DLSR) light sources were proposed, promising much better radiation performance than available in the existing third generation light sources. Regarding the very strong focusing and chromatic sextupoles that required for reaching an ultralow emittance, to optimize the nonlinear dynamics and achieve an adequate dynamic aperture is an important topic in a DLSR design. In this paper we will present some tips distilled from the DA optimization experience of the High Energy Photon Source over the past ten years, hoping it could provide some aids to other ultralow-emittance designs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF052 Progress of Lattice Design and Physics Studies on the High Energy Photon Source 1375
 
  • G. Xu, X. Cui, Z. Duan, Z. Duan, Y.Y. Guo, D. Ji, Y. Jiao, J.L. Li, X.Y. Li, C. Meng, Y.M. Peng, Q. Qin, S.K. Tian, J.Q. Wang, N. Wang, Y. Wei, H.S. Xu, F. Yan, C.H. Yu, Y.L. Zhao
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS) is an ultralow-emittance, kilometer-scale storage ring light source to be built in China. In this paper we will introduce the progress of the physical design and studies on HEPS over the past one year, covering issues of storage lattice design and optimization, booster design, injection design, collective effects, error study, insertion device effects, beam lifetime, etc.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF054 Performance Comparison of Different Ultralow Emittance Unit Cells 1382
 
  • Y. Jiao, X.Y. Li, G. Xu
    IHEP, Beijing, People's Republic of China
 
  The available minimum emittance of a storage ring and the ring performance is closely related to the unit cell of the lattice. Up to now, several ultralow-emittance unit cells have been proposed and applied in the lattice design of the diffraction-limited storage ring light sources. In this study we quantitatively compared the performance of three typical unit cells, based on mainly the parameters of the High Energy Photon Source. The results indicate that the modified-TME unit cell with antibend and longitudinal gradient dipole allows the lowest possible emittance, given a long enough cell length.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF055 Phase Matching Application in Hard X-Ray Region of HEPS 1386
 
  • X.Y. Li, Z. Duan, Y. Jiao, S.K. Tian
    IHEP, Beijing, People's Republic of China
 
  For the 6 meters long straight-section of HEPS, a double collinear double-cryogenic permanent magnet undulator(CPMU) structure is designed for high energy photon users to achieve higher brightness. Angular profiles of radiation produced by the double undulator configuration has been derived analytically. The efficiency of phase shifter on improving the brightness of double-CPMU is therefore evaluated with the beam energy spread is taken into account.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF056 Brightness Dependence Investigation and Optimizaiton for the Heps 1390
 
  • Y. Jiao, M. Li, X.Y. Li
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS) is an ultralow-emittance, kilometer-scale storage ring light source to be built in China. To maximize the photon spectral brightness, one of the most important performance parameters of the light source, we investigated the dependence of brightness on different parameters, such as the natural emittance, coupling, beta functions of the undulator section, and length of the undulator section. Based on this study, we optimized the HEPS lattice by using brightness as an optimizing objective.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF058 Conceptual Design of HEPS Injector 1394
 
  • J.L. Li, H. Dong, Z. Duan, Y.Y. Guo, D.Y. He, Y. Jiao, W. Kang, C. Meng, S. Pei, Y.M. Peng, J.R. Zhang, P. Zhang, Z.S. Zhou
    IHEP, Beijing, People's Republic of China
 
  Abstract The High Energy Photon Source (HEPS) will be constructed in the following few years. The light source is comprised of an ultra-low emittance storage ring and a full energy injector. The energy of the storage ring is 6 GeV. The injector is comprised of a 500 MeV linac, a 500 MeV to 6 GeV booster synchrotron and transport lines connecting the machines. In the present design, the linac uses normal conducting S-band bunching and accelerating structures. The booster adopts FODO cells, has a circumference of about 454 m and an emittance lower than 40 nmrad. The injector can provide a single-bunch charge up to 2 nC at 6 GeV for the storage ring. This paper briefly introduces the conceptual design of the injector of the HEPS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF068 Beam Dynamics on a Coupling Resonance at PETRA III 1417
 
  • I.V. Agapov, J. Keil, G. Kube, G.K. Sahoo, R. Wanzenberg
    DESY, Hamburg, Germany
  • Y.-C. Chae
    ANL, Argonne, Illinois, USA
  • A.I. Novokshonov
    TPU, Tomsk, Russia
 
  Working on a coupling resonance is a usual way of producing round beams in a synchrotron. The beam dynamics in this regime is however more complicated, and the emittance is sensitive to the working point, coupling correction, and bunch current drop with time, which complicates the operation. We present experience with optics setup for working on a coupling resonance in PETRA III, including linear and nonlinear beam optics characteristics, and the measurement of the horizontal and vertical beam emittances with a 2D interferometer. Beam dynamics on a coupling resonance for PETRA IV, the MBA upgrade of PETRA III currently under consideration, is also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF071 Status of Impedance Modeling for the PETRA IV 1423
 
  • Y.-C. Chae, R. Wanzenberg
    DESY, Hamburg, Germany
 
  The diffraction limited synchrotron light source envisioned for the PETRA IV project will require strong focusing to produce the small emittances in both planes. The large natural chromaticity together with small dispersion will require very strong sextupoles. In order to cope with high gradient magnets the radius of vacuum chamber tends to be in the range of 10 mm, which is very small compared to the current 40-mm wide elliptic chamber. The impedance element in the PETRA III was scaled down to fit into the smaller aperture so that the short range wakepotential can be computed numerically. For instance the beam position monitor (BPM) was reduced to 60% in dimension so that it can be used in PETRA IV. Even if the actual design of hardware does not exist yet, we assume that generic feature of PETRA III model is still valid. In this paper we report the up-to-date information on impedance model of PETRA IV together with the preliminary impedance budget based on the analytical formula. We also report the specific studies carried out to understand the kickfactor scaling with the chamber aperture whose radius is in the range of 8-12 mm.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF072 Microwave Instability and Energy Spread Measurement via Vertical Dispersion Bump in PETRA III 1427
 
  • Y.-C. Chae, D. Dzhingaev, M. Ebert, G. Falkenberg, J. Keil, G. Kube, G.K. Sahoo, M. Sprung, R. Wanzenberg, F. Westermeier
    DESY, Hamburg, Germany
  • A.I. Novokshonov
    TPU, Tomsk, Russia
 
  The recent measurement of bunch length versus current indicated that the longitudinal impedance (Z/n) is 0.15 Ω in close agreement with the impedance model*. Naive application of Keil-Schnell criteria predicts the threshold of microwave instability at 0.25 mA. Since the single bunch intensity is in the range of 0.2-2.5 mA depending on the fill-pattern of PETRA III, we expect to observe the fill-pattern dependent energy spread according to the theory. However, the 3rd generation light sources comparable to PETRA III often reported the observation which was much greater than the theoretical one. In order to induce the beam size variation we had used skew quadrupoles to generate the dispersion in vertical plane. In particular we made dispersion bump at the undulator sector so that we were able to use the X-ray optics for the precise determination of small vertical beam size. In this paper we report the experimental setup and measurement data with the estimate on the instability threshold. We also report the vertical emittance and energy spread based on the X-ray beam size measurement as well as the RF signal which was excited by the beam at the longitudinal feedback cavity.
* K. Balewski, R. Wanzenberg, "OBSERVATION OF INTENSITY DEPENDENT SINGLE BUNCH EFFECTS AT THE SYNCHROTRON LIGHT SOURCE PETRA III", Proc. of IPAC2011, p. 730.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF073 Impedance Optimization of Small Gap Chambers for the High Single Bunch Current Operation at the Undulator Based Light Sources 1430
 
  • Y.-C. Chae
    DESY, Hamburg, Germany
 
  In the undulator based light sources the intensity limit of single bunch is often determined by the strong vertical instability caused by the wakefield in the ring, where the undulator itself is large impedance source. The optimization of transition from the large aperture to undulator's small-gap chamber is on-going research topic in an effort to reduce the vertical impedance; at the same time, the demand on single-bunch current is high from the timing-mode x-ray user community. In this paper, after showing the results obtained by exploring the parameter space guided by Stupakov's formula, we propose the linearly-segmented transition which can reduce the impedance down to 60% or less of the original linear taper. The reduction can be utilized either to increase the bunch current substantially or to install a smaller gap chamber without impacting the bunch current limit. For the definite result we considered the transition between two ellipses, namely, (a, b) = (42 mm, 21 mm) and (18 mm, 4 mm) over the length 15-30 cm in beam direction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF074 Control of Collective Effects by Active Harmonic Cavity in an MBA-based Light Source with Application to the PETRA Upgrade 1433
 
  • Y.-C. Chae, J. Keil
    DESY, Hamburg, Germany
 
  Based on the reference lattice for PETRA IV* we investigated collective effects with non-zero current. Out of many possibilities we firstly computed the intrabeam-scattering (IBS) effects on the emittance as well as lifetime as a function of current. The result indicated that PETRA IV would benefit from the reduced peak current when the harmonic cavity lengthens the bunch. The operating point of harmonic cavity was explored by tracking simulations as well as analytic formula. In order to compute the energy spread and bunch length we had used the known impedance function of the APS**. In this way more realistic estimation of IBS effects was expected. However, because of the complex nature of PETRA IV lattice, which includes achromatic cells for undulators, arc cells of octants and straight sectors for damping wigglers, we simplify the longitudinal dynamics by assuming the ring made of 92 multi-bend-achromat (MBA) cells. The optics is approximated as a linear-chromatic transfer map enabling fast tracking and the ring impedance is concatenated into the one location. The detailed collective effects with and without harmonic cavities are presented in the paper.
* J. Keil, "A PETRA IV Lattice Based on Hybrid Seven Bend Achromats", these proceedings.
** Y.-C. Chae and Y. Wang, "Impedance Database II for the Advanced Photon Source Storage Ring", Proc. PAC2007.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF083 Influence of Intrabeam Scattering on the Emittance of PETRA III 1463
 
  • J. Keil, G. Kube, G.K. Sahoo, R. Wanzenberg
    DESY, Hamburg, Germany
 
  PETRA~III is a 6 GeV hard X-ray synchrotron radiation source at DESY in Hamburg (Germany) and is in user operation since~2010. The natural emittance of PETRA III is extremely low with 1.3 nm*rad and the coupling is typically less than 1%. PETRA III is operated with a beam current of 100 mA using two different filling modes: a continuous mode with 960 bunches and a timing mode with 40 bunches. It has been observed that the horizontal emittance depends on the filling pattern and is in timing mode slightly larger compared to the emittance in the continuous mode. Despite the high energy of 6 GeV intrabeam scattering contributes for a slight emittance growth due to the small natural emittance and coupling of the machine. The increase of the emittance as a function of the single bunch current has been measured by using different filling patterns at a fixed beam current of 100 mA. The measurements of the emittance and the lifetime as a function of the single bunch current will be compared with theoretical expectations of the emittance growth due to intrabeam scattering and the Touschek lifetime.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMK002 First Tests of the Apple II Undulator for the LOREA Insertion Device and Front End 1488
 
  • J. Campmany, L.G.O. Garcia-Orta, J. Marcos, Z. Martí, V. Massana, M. Quispe
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  ALBA synchrotron is currently installing the new beamline LOREA (Low-Energy Ultra-High-Resolution Angular Photoemission for Complex Materials at ALBA). It operates in the range of 10 - 1500 eV with polarized light. To produce the light for the beamline, an Apple II undulator with a period of 125 mm has been chosen. It can operate as an undulator at low energies and as a wiggler at high energies, providing a wide energy range. The device was built by KYMA, delivered on February 2017 and installed in August 2017. We present the magnetic measurements made during SAT as well as the simulations of the influence of the ID in the electron beam dynamics and the first measurements with beam. On the other hand, the high demanding characteristics of the beamline lead to a device providing high power and wide beam in some working modes. This situation has been a challenge for the Front End (FE) thermal load. It has been built by the companies RMP and TVP, and the FE modules have been installed in the tunnel along autumn 2017. We present the Site Acceptance Tests results as well as the technical solutions adopted, especially in terms of mechanical design and used materials.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMK002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYGBD4
Inverse Free-Electron-Laser Based Inverse Compton Scattering: an All-Optical 5th Generation Light Source  
 
  • J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
 
  Compact monochromatic X-ray sources based on very high field acceleration and very short period undulators may revolutionize diverse advanced X-ray applications ranging from novel X-ray therapy techniques to active interrogation of materials, by making them accessible in cost and size. Such compactness may be obtained by an all-optical approach, which employs a laser-driven high gradient accelerator based on inverse free electron laser (IFEL), followed by an inverse Compton scattering (ICS) IP, a scheme where a laser is used as an undulator. We discuss experimental progress in understanding high-intensity effects in ICS, as well as the development of an efficient IFEL. We then describe the proof-of-principle of an all-optical IFEL-based system , where a TW-class CO2 laser pulse is split in two, with half used to accelerate a high quality electron beam up to 84 MeV through the IFEL interaction, and the other half acts as an electromagnetic undulator to generate up to 13 keV X-rays via ICS. These results demonstrate the feasibility of this scheme, which can be joined with other techniques such as laser recirculation to yield very compact, high brilliance, keV to MeV photon sources.  
slides icon Slides WEYGBD4 [24.592 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXGBD1 The Upgrade of the Advanced Photon Source 2872
 
  • M. Borland, M. Abliz, N.D. Arnold, T.G. Berenc, J.M. Byrd, J.R. Calvey, J.A. Carter, J. Carwardine, H. Cease, Z.A. Conway, G. Decker, J.C. Dooling, L. Emery, J.D. Fuerst, K.C. Harkay, A.K. Jain, M.S. Jaski, P.S. Kallakuri, M.P. Kelly, S.H. Kim, R.M. Lill, R.R. Lindberg, J. Liu, Z. Liu, J. Nudell, C.A. Preissner, V. Sajaev, N. Sereno, X. Sun, Y.P. Sun, S. Veseli, J. Wang, U. Wienands, A. Xiao, C. Yao
    ANL, Argonne, Illinois, USA
  • A. Blednykh
    BNL, Upton, Long Island, New York, USA
 
  After decades of successful operation as a 7-GeV synchrotron radiation source, the Advanced Photon Source is pursing a major upgrade that involves replacement of the storage ring with an ultra-low emittance multi-bend achromat design. Using a seven-bend hybrid multi-bend achromat with reverse bending magnets gives a natural emittance of 42 pm operated at 6 GeV. The x-ray brightness is predicted to increase by more than two orders of magnitude. Challenges are many, but appear manageable based on thorough simulation and in light of the experience gained from world-wide operation of 3\text{rd}-generation light sources. The upgraded ring will operate in swap-out mode, which has allowed pushing the performance beyond the limits imposed by conventional operation.  
slides icon Slides THXGBD1 [14.684 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THXGBD1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXGBD3 Status of the ESRF-Extremely Brilliant Source Project 2882
 
  • J.-L. Revol, C. Benabderrahmane, P. Berkvens, J.C. Biasci, J-F. B. Bouteille, T. Brochard, N. Carmignani, J.M. Chaize, J. Chavanne, F. Cianciosi, A. D'Elia, R.D. Dimper, M. Dubrulle, D. Einfeld, F. Ewald, L. Eybert, G. Gautier, L. Goirand, L. Hardy, J. Jacob, B. Joly, M.L. Langlois, G. Le Bec, I. Leconte, S.M. Liuzzo, C. Maccarrone, T.R. Mairs, T. Marchial, H.P. Marques, D. Martin, J.M. Mercier, A. Meunier, M. Morati, J. Pasquaud, T.P. Perron, E. Plouviez, E. Rabeuf, P. Raimondi, P. Renaud, B. Roche, K.B. Scheidt, V. Serrière, P. Van Vaerenbergh, R. Versteegen, S.M. White
    ESRF, Grenoble, France
 
  The ESRF - the European Synchrotron Radiation Facility - is a user facility in Grenoble, France, and the source of intense high-energy (6 GeV) X-rays. In 2019, the existing storage ring will be removed and a new lattice will be installed in its place, dramatically reducing the equilibrium horizontal emittance. This 'fourth-generation' synchrotron will produce an X-ray beam 100 times more brilliant and coherent than the ESRF source today. The Extremely Brilliant Source (EBS) project was launched in 2015 and is now well underway, on track for its scheduled completion in 2020. The design is completed, the procurement in full swing, the assembly has started, and critical installation activities are being prepared. The current status, three years into the project, will be revealed, along with the expected performance of the accelerator and the technical challenges involved. This paper will focus on the implementation of the project.  
slides icon Slides THXGBD3 [13.547 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THXGBD3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXGBD4 Sirius Light Source Status Report 2886
 
  • A.R.D. Rodrigues, F.C. Arroyo, O.R. Bagnato, J.F. Citadini, R.H.A. Farias, J.G.R.S. Franco, R. Junqueira Leao, L. Liu, S.R. Marques, R.T. Neuenschwander, C. Rodrigues, F. Rodrigues, R.M. Seraphim, O.H.V. Silva
    LNLS, Campinas, Brazil
 
  Sirius is a Synchrotron Light Source Facility based on a 4th generation 3 GeV low emittance electron storage ring that is under construction in Campinas, Brazil. Presently the main tunnel for the accelerators is ready to start installations. The Linac tunnel was delivered earlier and the 150 MeV Linac from SINAP is almost ready to start commissioning early May. Commissioning of the storage ring is expected to start by the end of this year (2018). In this paper we briefly review the overall project parameters and design concepts and focus on highlights from the main subsystems.  
slides icon Slides THXGBD4 [28.400 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THXGBD4  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF005 Evaluating the Impact of Diamond-II Possible Lattices on Beamlines 4033
 
  • M. Apollonio, L. Alianelli, F. Bakkali Taheri, R. Bartolini, A.J. Dent
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini, J. Li
    JAI, Oxford, United Kingdom
 
  At Diamond Light Source we are considering an upgrade of the machine aimed at significantly reduced emittance (la factor 20), that follows a worldwide trend in similar synchrotron radiation sources. An important aspect in the design of the upgrade is the optimization of the photon beam properties, such as flux, brilliance, spot size, divergence or coherence of the new sources and how these are translated into requirements on the electron beam and on the machine design. We present a study based on a combination of accelerator physics tracking codes (AT, elegant) and of radiation codes (SPECTRA, SRW, SHADOW), with the aim at bridging the gap between machine and beamlines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF006 Control of the Nonlinear Dynamics for Medium Energy Synchrotron Light Sources 4037
 
  • J. Bengtsson, R. Bartolini, H. Ghasem, B. Singh
    DLS, Oxfordshire, United Kingdom
  • A. Streun
    PSI, Villigen PSI, Switzerland
 
  MAX-IV has introduced a paradigm shift in the design philosophy for the "Engineering-Science" in the quest for a diffraction limited Synchrotron Light Source. Similarly, SLS-2 has introduced a systematic method for controlling the Linear Optics beyond some 20 years of TME inspired paper designs; by introducing Reverse Bends to disentangle dispersion and focusing, which enables Longitudinal Gradient Bends to efficiently reduce the emittance. Similarly, we outline a systematic approach for how to control the Nonlinear Dynamics for these systems, by a method that was pioneered for the conceptual design of the Swiss Light Source in the mid-1990s; subsequently benchmarked and validated by the commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF007 Commissioning of the Hybrid Superconducting/Normal Conducting RF System in the Diamond Storage Ring 4042
 
  • C. Christou, A.G. Day, P. Gu, P.J. Marten, S.A. Pande, D. Spink, A. Tropp
    DLS, Oxfordshire, United Kingdom
 
  Two 500 MHz HOM damped normal conducting cavities have been installed in the Diamond storage ring to ensure continuity of operation of Diamond in the event of a failure of one of the two existing superconducting cavities. Following receipt from the manufacturer, the cavities were incorporated into an assembly including vacuum pumping, cooling and interlocked diagnostics and then tested for vacuum integrity and RF performance. Both cavities were then conditioned up to high power in Diamond's RF test facility before being installed in the storage ring in August and November 2017. Conditioning and operation has been carried out using a new digital LLRF system. Results of acceptance tests and commissioning with power and beam are presented, together with the current status of the hybrid RF system and options for further improvement of the system in the near future.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF008 Conceptual Design of an Accumulator Ring for the Diamond II Upgrade 4046
 
  • I.P.S. Martin, R. Bartolini
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  Diamond Light Source is in the process of reviewing several lattice options for a potential storage ring upgrade. As part of these studies, it has become clear that a substantial reduction in emittance can be achieved by adopting an on-axis injection scheme, thereby relaxing the constraints on the dynamic aperture. In order to achieve the necessary injected bunch properties for this to be viable, a new accumulator ring would be needed. In this paper we review the requirements placed on the accumulator ring design, describe the lattice development process and analyse the performance of the initial, conceptual design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF009 Lattice Options for DIAMOND-II 4050
 
  • B. Singh, R. Bartolini, J. Bengtsson, H. Ghasem
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
  • A. Streun
    PSI, Villigen PSI, Switzerland
 
  Funding: Diamond Light Source Ltd
Generalized MBA (Multi-Bend-Achromat) Chasman-Green type lattices, with a low-dispersion mid-straight, have been studied and refined by pursuing a generalized Higher Order Achromat to control the non-linear dynamics to obtain a robust design. New candidate lattice have been produced aiming for a horizontal emittance of 150 pm×rad for off-axis injection and 75 pm×rad for on-axis, the latter making use of reverse bends. The results of these studies and evaluations have been summarized in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF010 Status of Elettra and Future Upgrades 4054
 
  • E. Karantzoulis, A. Carniel, R. De Monte, S. Krecic, C. P. Pasotti
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The operational status of the Italian 2.4/2.0 GeV third generation light source Elettra is presented together with the possible future upgrades especially concerning the next ultra low emittance light source Elettra 2.0  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF017 Operation Improvements and Emittance Reduction of the ESRF Booster 4077
 
  • N. Carmignani, N. Benoist, J-F. B. Bouteille, M.G. Di Vito, F. Ewald, L. Farvacque, A. Franchi, O. Goudard, J.M. Koch, S. Lagarde, S.M. Liuzzo, B. Ogier, T.P. Perron, P. Raimondi, D. Robinson, F. Taoutaou, E.T. Taurel, P.V. Verdier, R. Versteegen, P. Vidal, S.M. White
    ESRF, Grenoble, France
 
  The ESRF storage ring will be replaced by the Extremely Brilliant Source (EBS) in 2020 and the equilibrium emittance will decrease from the present 4 nmrad to 134 pmrad. The current injector system, composed by a linac and a synchrotron booster, will be used to inject into the new storage ring. To increase the injection efficiency in the new storage ring, three methods to reduce the horizontal emittance of the booster have been considered and tested. This paper presents the studies and achievements in terms of operation improvements and emittance reduction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF019 ESRF-EBS Lattice Model with Canted Beamlines 4081
 
  • S.M. Liuzzo, N. Carmignani, J. Chavanne, L. Farvacque, T.P. Perron, P. Raimondi, S.M. White
    ESRF, Grenoble, France
 
  The ESRF Extremely Brilliant Source (ESRF-EBS) lattice model is updated to include three canted beamlines. The cells are modified where necessary to include 3-Pole Wiggler (3PW), 2-Pole Wiggler (2PW) and Short Bending Magnet (SBM) sources. Several lattices are obtained for the different stages that will bring from commissioning to operation with users. A scheme for tune modification keeping key optics knobs unchanged is proposed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF020 A 4th Generation Light Source for South-East Europe 4084
 
  • H. Ghasem, R. Bartolini
    DLS, Oxfordshire, United Kingdom
  • D. Einfeld
    ESRF, Grenoble, France
 
  In Europe, most of the Synchrotron Light Sources are located in the middle, west and northern regions while the south-east is still lacking any major project. Hence a new initiative has been set up to propose the construction of a 4th Generation Light Source in that region. Design requirements limit the beam energy between 2.5 GeV to 3 GeV, the circumference is limited to 350 m, the emittance should be smaller than 250 pm rad and at least 14 to 16 straights have to be available for the users. Several mag-net configurations have been investigated and the results revealed that the HMBA lattice can fully meets the requirements and is therefore proposed for the Light Source in the SEE-region of Europe. These studies show that for a 4th Generation Light Source with energies up to 3 GeV a circumferences of 350 m will be adequate.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF021 ESRF Operation Status 4088
 
  • J.-L. Revol, J.C. Biasci, N. Carmignani, A. D'Elia, A. Franchi, L. Hardy, J. Jacob, I. Leconte, S.M. Liuzzo, H.P. Marques, T.P. Perron, E. Plouviez, P. Raimondi, B. Roche, K.B. Scheidt, L. Torino, S.M. White
    ESRF, Grenoble, France
 
  The European Synchrotron Radiation Facility (ESRF) is undergoing the second phase (2015-2022) of an Up-grade which concerns its infrastructure, beamlines and X-ray source. This paper reports on the present operational source performance, highlighting the most recent developments, and the preparation of the Extremely Brilliant Source project. The renovation of the injector and the recent operation in top-up mode are also detailed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF030 VSR Injector Upgrade at BESSY II 4110
 
  • T. Atkinson, P. Goslawski, J.G. Hwang, M. Ries
    HZB, Berlin, Germany
  • T. Flisgen, T. Mertens
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Berlin, Germany
 
  BESSY VSR is a fully funded project at the Helmholtz-Zentrum in Berlin (HZB). The objective is to produce simultaneously both long and short pulses in the storage ring. The implications for the existing injector systems and the upgrade strategy are presented. Envisaged is a global upgrade which includes additional accelerating structures to reduce the bunch length in the booster, orbit measurements and implementing longitudinal feedback.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF031 In-Vacuum APPLE II Undulator 4114
 
  • J. Bahrdt, W. Frentrup, S. Grimmer, C. Kuhn, C. Rethfeldt, M. Scheer, B. Schulz
    HZB, Berlin, Germany
 
  APPLE II undulators are widely used in many synchrotron radiation facilities for the generation of arbitrarily polarized light, because they provide the highest magnet fields among all planar variably polarizing permanent magnet undulators (PMUs). So far, in-vacuum permanent magnet undulators (IVUs) have a fixed polarization, either planar or elliptical / helical. A variably polarizing in-vacuum undulator was never built due to the engineering challenges. We present the design of a new in-vacuum APPLE II, which will extend the photon energy range to tender X-rays in the 1.7 GeV storage ring BESSY II.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF033 Design of the Beamline Elements in the BESSY VSR Cold String 4123
 
  • H.-W. Glock, F. Glöckner, J. Knobloch, E. Sharples, A.V. Tsakanian, A.V. Vélez
    HZB, Berlin, Germany
  • T. Flisgen
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of the Helmholtz Association
The four SRF cavities in the BESSY VSR module will be linked by bellows, which will be equipped with inner coaxial shielding pipes to prevent both parasitic fundamental mode losses and beam-induced heating. The central bellow will also act as a collimator for synchrotron radiation generated in the closest upstream dipole magnet. Additional bellows at the module's ends are needed to connect with the warm BESSY beam pipe. Outside the module the beam pipe cross section transitions will be located, which will be equipped with toroidal HOM absorbing elements. In the paper the recent design considerations and specifications for all those components will be described.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF035 Numerical Analysis of Excitation Property of Pulse Picking by Resonant Excitation at BESSY II 4131
 
  • J.G. Hwang, M. Koopmans, R. Müller, M. Ries, A. Schälicke
    HZB, Berlin, Germany
 
  The pulse picking by resonant excitation (PPRE) method is applied at BESSY II to provide pseudo single bunch operation by separating the radiation from one horizontally enlarged bunch from the light of the multi-bunch filling. The bunch is enlarged by an excitation with an external signal close to the tune resonance. The variation of the beam size depends strongly on the frequency and amplitude of the excitation signal. In this paper we show the properties of the PPRE bunch studied by analytical modeling and numerical calculations using Elegant. The simulation results are compared with beam size measurements using a new interferometry beam size monitor at BESSY II.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF036 Status of the Conceptual Design of ALS-U 4134
 
  • C. Steier, A.P. Allézy, A. Anders, K.M. Baptiste, E.S. Buice, K. Chow, G.D. Cutler, S. De Santis, R.J. Donahue, D. Filippetto, J.P. Harkins, T. Hellert, M.J. Johnson, J.-Y. Jung, S.C. Leemann, D. Leitner, M. Leitner, T.H. Luo, H. Nishimura, T. Oliver, O. Omolayo, J.R. Osborn, G.C. Pappas, S. Persichelli, M. Placidi, G.J. Portmann, S. Reyes, D. Robin, F. Sannibale, C. Sun, C.A. Swenson, M. Venturini, S.P. Virostek, W.L. Waldron, E.J. Wallén
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The ALS-U conceptual design promises to deliver diffraction limited performance in the soft x-ray range by lowering the horizontal emittance to about 70 pm rad resulting in two orders of brightness increase for soft x-rays compared to the current ALS. The design utilizes a nine bend achromat lattice, with reverse bending magnets and on-axis swap-out injection utilizing an accumulator ring. This paper shows some aspects of the completed conceptual design of the accelerator, as well as some results of the R&D program that has been ongoing for the last years.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF038 Status of the BESSY VSR Project 4138
 
  • P. Schnizer, W. Anders, Y. Bergmann, P. Goslawski, H. Hartmut, A. Jankowiak, J. Knobloch, A. Neumann, K. Ott, M. Ries, A. Schälicke, A.V. Vélez
    HZB, Berlin, Germany
 
  BESSY VSR is set out to provide a variable pulse pattern to the BESSY II users. This project is now fully funded and heading into its implementation phase. The pulse pattern, consisting of long and short pulses, require inserting cavities providing a 3rd and a 3.5th harmonic of the fundamental harmonic of the ring. Therefore 1.5 and 1.75 GHz cavities are developed with appropriate higher order mode damping spectrum. Similarly the BESSY II ring and injector chain has to be upgraded to provide appropriate diagnostics and increase the injection efficiency. In this paper we give the current status of the project and give an overview of scientific challenges currently being tackled.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF041 Low Emittance Lattice for PF-AR 4148
 
  • N. Higashi, K. Harada, S. Nagahashi, N. Nakamura, T. Obina, R. Takai, H. Takaki
    KEK, Ibaraki, Japan
  • K. Hirano
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
 
  PF-AR is a synchrotron-type 6.5 GeV light source in KEK. The user-run was started in 1987, and the lattice is almost the same as the original one. Now we consider the emittance improvement to enlarge the horizontal tune advance in the normal cell. Thanks to this manipulation, the emittance will be improved to about a half of the current value.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF043 Development and Present Status of Photon Factory Light Sources 4155
 
  • T. Honda, Y. Kobayashi, S. Nagahashi, R. Takai
    KEK, Ibaraki, Japan
 
  Photon Factory of KEK manages two light sources, Photon Factory storage ring (PF-ring) and Photon Factory Advanced Ring (PF-AR) with an energy of 2.5 GeV and 6.5 GeV, respectively. Although it is unfortunate that the operation time of the accelerators is decreasing recent years due to a budget shortage and some unavoidable reconstructions, we are continuing the operation with a low failure rate and constructing a new beamline based on a novel undulator. Preparing for the start of the physics run of Super KEKB Factory, a new full energy beam transport line from the injector LINAC to PF-AR was constructed. With an installation of pulsed quadrupole magnets for the LINAC, continuous top-up injection has been established simultaneously for the four storage rings of PF and Super KEKB, and the operation of them has become compatible. As a result of increasing the injection energy of PF-AR form 3 GeV to 6.5 GeV, the beam instability during the injection disappeared, and the stability and efficiency of the injection improved significantly.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF053 Study of the Dynamic Aperture Reduction Due to Error Effects for the High Energy Photon Source 4182
 
  • Z. Duan, D. Ji, Y. Jiao
    IHEP, Beijing, People's Republic of China
 
  Funding: Work supported by Natural Science Foundation of China(No.11605212).
The 6 GeV High Energy Photon Source (HEPS) employs a lattice of 48 hybrid 7BA cells, aims to achieve a natural emittance between 30 to 60 pm, within a circumference of about 1.3 km. In the performance evaluation of optimized lattices, we found that the dynamic aperture of the bare lat- tice were su cient for on-axis swap-out injection, but a large reduction in the dynamic aperture was observed in the simu- lation when including lattice imperfections and even after dedicated lattice corrections. In this paper, we identi ed the feed-down e ects of sextupoles as the major source of DA reduction, and proposed to use dedicated sextupole movers to e ciently reduce the orbit o sets in sextupoles, to par- tially recover the dynamic aperture, sextupole mover-based optics correction schemes were also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF054 Beam Performance Simulation with Error Effects and Correction on HEPS Design 4186
 
  • D. Ji, X. Cui, Z. Duan, Y. Jiao, Y. Wei, Y.L. Zhao
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS) is a 6-GeV, ul-tralow-emittance kilometre-scale storage ring light source to be built in China. In this paper, the progress of the error and correction effect study on HEPS over the past one year will be presented, including error requirement and correction progress update. And beam performance eval-uation with static error and correction on orbit, optics, emittance and dynamic aperture will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF059 Simulation Studies of Beam Commissioning and Expected Performance of the SPring-8-II Storage Ring 4203
 
  • Y. Shimosaki
    JASRI, Hyogo, Japan
  • K. Soutome, M. Takao
    JASRI/SPring-8, Hyogo-ken, Japan
  • H. Tanaka
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  In the SPring-8 upgrade project, the 5-bend achromat lattice is adopted for achieving a very low emittance of 157 pm.rad at 6 GeV. Since the dynamic aperture (DA) and the beam performance become sensitive against errors due to the strong quadrupoles and sextupoles, we carried out tracking simulations to evaluate the tolerance of machine imperfections such as the misalignment, magnetic field errors, the BPM offset, etc. It is found that the first-turn-steering (FTS) with the use of single-pass BPM's is indispensable because even under strict (but attainable) tolerances the beam cannot be stored without steering kicks. We then confirmed that after the FTS a sufficiently large DA can be obtained for accumulating the beam by the off-axis injection. By performing the orbit and optics corrections for the stored beam, we can finally achieve an emittance value of 160 ~ 180 pm.rad, being close to the design value. We also found that a naive application of the SVD algorithm to orbit corrections yields unwanted local bumps between BPM's and this deteriorates the vertical emittance. A possible scheme to avoid such local bumps by effectively interpolating the measured orbit will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF060 Touschek Beam Loss Simulation for Light Source Storage Rings 4206
 
  • M. Takao, K. Soutome
    JASRI/SPring-8, Hyogo-ken, Japan
  • Y. Shimosaki
    JASRI, Hyogo, Japan
  • K. Soutome, H. Tanaka
    RIKEN SPring-8 Center, Hyogo, Japan
 
  In light source storage rings, it is important to know the distribution of lost electrons due to the Touschek scattering for protecting insertion devices (IDs) from radiation damage. This will become crucial especially in future light sources where narrow gap in-vacuum IDs are normally used. While the Touschek scattered electron begins to oscillate in the horizontal direction with the amplitude proportional to the dispersion at the scattering point and to the momentum deviation after scattering, the motion is converted into the vertical direction due to the betatron coupling and some of the scattered electrons are lost at the narrow gaps of in-vacuum IDs. The momentum deviation by the Touschek scattering reaches 5% more, and according to which the vertical oscillation is more excited. Hence electrons even scattered at small horizontal dispersion are also lost at narrow gap IDs. We carried out computer simulations by taking the present SPring-8 storage ring and a planned 3GeV low-emittance ring as examples. The results and possible measures for ID protection will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF061 Updates on Hardware Developments for SPring-8-II 4209
 
  • T. Watanabe, S. Takano
    Japan Synchrotron Radiation Research Institute (JASRI), RIKEN SPring-8 Center, Hyogo, Japan
  • H. Tanaka
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  We will report the updates on hardware developments for SPring-8-II including a status on a test half-cell construction. A major upgrade of SPring-8, SPring-8-II, targeting substantial improvements in the light source performance is based on a five-bend achromat lattice at an electron energy of 6 GeV*, and hardware accommodating with the new lattice have been extensively developed**. Some of key features are permanent dipole magnets, SUS vacuum chambers, highly accurate and reliable electron and photon beam position monitors, and an extremely small emittance beam injection from the SACLA linac to the storage ring. In the process of the optimization, we cannot rely merely on independent developments; the high packing factor lattice naturally imposes an integration of the individual efforts into a whole design. Thus, a test-half cell has been constructed as one of important milestones, where we need to carefully look through specification balances between different components, physical and magnetic interferences, etc. The presentation will give overall status on the developments as well as the test half-cell construction.
* H. Tanaka et al., Proc. of IPAC2016, Busan, Korea (2016), p.2867. K. Soutome and H. Tanaka, PRAB 20, 064001 (2017).
** e,g, T. Watanabe et al., PRAB 20, 072401 (2017).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF070 Non-Linear Optics and Low Alpha Operation at the Storage Ring KARA at KIT 4235
 
  • A.I. Papash, E. Blomley, M. Brosi, J. Gethmann, B. Kehrer, A.-S. Müller, M. Schuh, P. Schönfeldt, J.L. Steinmann
    KIT, Karlsruhe, Germany
 
  The storage ring Karlsruhe Research Accelerator (KARA) at KIT operate in a wide energy range from 0.5 to 2.5 GeV. Different non-linear effects, in particular, residual octupole components of the magnetic field of the CATACT wiggler at high field level (2.5 T), proximity of the working point to a vertical sextupole resonance Qy=8/3 and weak coupling octupole resonance 2Qx+2Qy=19, high chromaticity, etc. decrease the beam life time. This is because of the reduced dynamic aperture and momentum acceptance for off-momentum particles. A new operation point at high vertical tune Qy=2.81 was tested. For this, injection and ramping tables have been modified. First the values were optimized by simulations, then during beam tests, to minimize betatron tune shaking during beam-energy ramps. It stabilized high-current beams by the fast-feedback system the whole process: injection at 0.5 GeV, ramping, and operation at 1.3 GeV cycles. It essentially improved life time and beam current. In addition, new low-alpha tables have been created and tested, resulting in the reduction of the momentum compaction factor to 10-4. Short bunch operation at 0.5GeV injection energy was also tested successfully.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF071 Design of a Very Large Acceptance Compact Storage Ring 4239
 
  • A.I. Papash, E. Bründermann, A.-S. Müller, R. Ruprecht, M. Schuh
    KIT, Eggenstein-Leopoldshafen, Germany
 
  Design of a very large acceptance compact storage ring is underway at the Institute for Beam Physics and Technology of the Karlsruhe Institute of Technology (Germany). Combination of a compact storage ring and a laser wake-field accelerator (LWFA) might be the basis for future compact light sources and advancing user facilities. Meanwhile the post-LWFA beam is not fitted for storage and accumulation in conventional storage rings. New generation rings with adapted features are required. Different geometries and lattices of a ring operating between 50 to 500 MeV energy range were investigated. The model suitable to store the post-LWFA beam with a wide momentum spread (1% to 2%) and ultra-short electron bunches of fs range was chosen as basis for further detailed studies. The DBA-FDF lattice with relaxed settings, split elements and high order optics of tolerable strength allows improving the dynamic aperture up to 20 mm. The momentum acceptance of the compact lattice exceeds 8% while dispersion is limited. The physical program includes turn-by-turn phase compression of a beam, crab cavities, dedicated alpha optics mode of operation, non-linear insertion devices etc.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF077 A Novel 7BA Lattice for a 196-m Circumference Diffraction-Limited Soft X-Ray Storage Ring 4252
 
  • S.C. Leemann, W.E. Byrne, M. Venturini
    LBNL, Berkeley, California, USA
  • J. Bengtsson
    DLS, Oxfordshire, United Kingdom
  • A. Streun
    PSI, Villigen PSI, Switzerland
 
  Funding: Work supported by the Director of the Office of Science of the US Department of Energy under Contract No. DEAC02-05CH11231
The current baseline for the ALS Upgrade to a diffraction-limited soft x-ray storage ring is a 9BA lattice with two dispersion bumps for localized chromatic corrections. Although this lattice meets the very aggressive emittance goal, it offers limited margins in terms of dynamic aperture and momentum acceptance. In this paper we explore a different approach based on a 7BA lattice with distributed chromatic correction. This lattice relies heavily on longitudinal gradient bends and reverse bending in order to suppress the emittance so that despite fewer bends an emittance comparable to the baseline lattice can be reached albeit with larger dynamic aperture and momentum acceptance. We present linear optics design, trade-offs between achievable emittance and longitudinal stability, as well as the employed nonlinear tuning approach and the resulting performance of this alternate lattice.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK004 Pulse-Picking by Resonant Excitation (PPRE) for Timing Users at the MAX IV 3 GeV Storage Ring 4300
 
  • T. Olsson, Å. Andersson, D.K. Olsson
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  At synchrotron light storage rings there is demand for serving both high-brilliance and timing users simultaneously. At many rings this is commonly achieved by operating fill patterns with gaps of sufficient length, but this is not favorable for rings that operate with passive harmonic cavities to damp instabilities and increase Touschek lifetime by lengthening the bunches. For such rings, gaps in the fill pattern could severely reduce the achievable bunch lengths. For the MAX IV 3 GeV storage ring, sufficient bunch lengthening is also essential for conserving the ultralow emittance and reducing heat load on vacuum components at high current. It is therefore of interest to study methods to serve timing users while operating without gap in the fill pattern. Once such method is PPRE, where the transverse emittance of one bunch in the bunch train is increased by an incoherent betatron excitation. This paper presents simulations for the MAX IV 3 GeV storage ring and discusses the machine requirements as well as the achievable performance for timing users.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK015 Low Momentum Compaction Lattice Operation of the Taiwan Photon Source 4325
 
  • C.-C. Kuo, C.H. Chen, J.Y. Chen, P.C. Chiu, K.T. Hsu, K.H. Hu, C.H. Huang, C.C. Liang, C.Y. Liao, Y.-C. Liu, Z.K. Liu, H.-J. Tsai, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  In order to provide short bunch length for picosecond time-resolved experiments and for coherent IR/THz radiation, low momentum compaction factor (alpha) lattices have been commissioned recently at the Taiwan Photon Source (TPS). The momentum compaction can be positive or negative and its value can be reduced by more than two orders of magnitude. In this paper, we discuss variable low alpha lattice optics, its beam dynamics issues, the measured momentum compaction and bunch lengths as well as beam orbit stability issues, etc.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK020 Beam-Based Alignment Procedures for Small Gap in-Vacuum Undulators at the Taiwan Photon Source 4342
 
  • Y.-C. Liu, J.C. Huang, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  We have developed a beam-based alignment procedure for small gap IVUs (In-vacuum undulators) at TPS, which allow us to measure the field center and mechanical canter of IVUs with 0.1 mm accuracy. The measurement method and results are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK026 Mobile Free-Electron Laser for Remote Atmospheric Survey 4351
SUSPF006   use link to see paper's listing under its alternate paper code  
 
  • S. Johnson, G.A. Krafft, B. Terzić
    ODU, Norfolk, Virginia, USA
  • G.A. Krafft
    JLab, Newport News, Virginia, USA
 
  Funding: This paper is authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05- 06OR23177. E.J. was supported by the Virginia Space Grant Consortium, grant number 16-589.
Reliable atmospheric surveys for carbon distributions will be essential to building an understanding of the Earth's carbon cycle and the role it plays in climate change. One of the core needs of NASA 's Active Sensing of CO2 Over Nights, Days and Seasons (ASCENDS) Mission is to advance the range and precision of current remote atmospheric survey techniques. The feasibility of using accelerator-based sources of infrared light to improve current airborne lidar systems has been explored. A literary review has been conducted to asses the needs of ASCENDS versus the current capabilities of modern atmospheric survey technology, and the parameters of a free electron laser (FEL) source were calculated for a lidar system that will meet these needs. By using the "Next Linear Collider" from the Stanford Linear Accelerator Center (SLAC), a mobile FEL-based lidar may be constructed for airborne surveillance. The calculated energy of the lidar pulse is 0.1 joule: this output is a two orders of magnitude gain over current lidar systems, so in principle, the mobile FEL will exceed the needs of ASCENDS. Further research will be required to asses other challenges to mobilizing the FEL technology.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK029 Towards an Upgrade of the Swiss Light Source 4358
 
  • A. Streun, M. Aiba, M. Böge, T. Garvey, V. Schlott
    PSI, Villigen PSI, Switzerland
 
  An upgrade of the Swiss Light Source (SLS) is planned for the period 2021-24. The existing 12-TBA (triple bend achromat) lattice will be exchanged by a 12-7BA (7-bend achromat) lattice in order to reduce the emittance from present 5.5 nm down to about 125 pm at 2.4 GeV / 400 mA (IBS included). The new lattice is based on longitudinal gradient bends and reverse bends to realize low emittance despite the small circumference of 290 m. A conceptual design has been established. We present project status, lattice design and work in progress with emphasis on beam dynamics issues.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK071 Lattice Design for a 1.2 GeV Storage Ring 4464
SUSPF007   use link to see paper's listing under its alternate paper code  
 
  • S.Q. Shen, S.Q. Tian, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  It is a very effective way to bring down the emittance of storage ring by using the MBA lattice design. Based on this concept, some other solutions have been developed to reduce the emittance furthermore for recent years. In this paper, the lattice design for a 1.2 GeV storage ring will be presented. The solution of horizontal and longitudinal gradient bending magnets tried in this lattice is going to be discussed in detailed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK075 A Possible Scheme for Generating High-harmonic Coherent Radiation in Storage Rings 4473
SUSPF009   use link to see paper's listing under its alternate paper code  
 
  • X.F. Wang, C. Feng, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  A possible scheme for storage ring FEL which can introduce small energy dispersion and emittance simultaneously to generate intense coherent light in the storage rings is described. Based on a modified version of echo-enabled harmonic generation from free-electron lasers, the technique uses a dogleg and a wave-front tilted seed laser, one normal seed laser and two chicanes to make three-dimensional manipulation of the electron beam phase space, producing high-harmonic microbunching of a relativistic electron beam. Due to small energy dispersion and emittance growth, the storage rings do not need long damping time to recover the quality of the electron beams, so this scheme will significantly improve the performance of FELs based on rings. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in Shanghai Synchrotron Radiation Facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK087 Conceptual Design of the RF System for the Storage Ring and Linac of the New Light Source in Thailand 4505
 
  • N. Juntong, T. Chanwattana, K. Kittimanapun, T. Pulampong, P. Sunwong
    SLRI, Nakhon Ratchasima, Thailand
 
  The new light source facility in Thailand will be a ring-based light source with the circumference of approximately 300m and an electron energy of 3GeV. The target beam emittance is below 1.0 nm·rad with a maximum beam current of 300mA. The injector utilizes a full energy C-band linac with a photocathode RF electron gun. The storage ring RF system is based on a 500MHz frequency. The EU-HOM damped cavity and the new SPring-8 design TM020 cavity is the choice of the storage ring cavity. The RF power unit for storage ring can either be a high-power klystron feeding all RF cavities or a combination of low power IOTs or solid-state amplifiers feeding each cavity. The high gradient C-band structure is considered as the main accelerating structure for linac. The RF power system for linac will base on klystron and a modular modulator. Details of RF systems options for this new light source project will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK092 SOLEIL Status Report 4516
 
  • L.S. Nadolski, G. Abeillé, Y.-M. Abiven, P. Alexandre, F. Bouvet, F. Briquez, P. Brunelle, A. Buteau, N. Béchu, M.-E. Couprie, X. Delétoille, T. Didier, J.M. Dubuisson, C. Herbeaux, N. Hubert, C.A. Kitegi, M. Labat, J.-F. Lamarre, P. Lebasque, A. Lestrade, A. Loulergue, P. Marchand, O. Marcouillé, F. Marteau, A. Nadji, R. Nagaoka, P. Prigent, F. Ribeiro, K.T. Tavakoli, M.-A. Tordeux, M. Valléau
    SOLEIL, Gif-sur-Yvette, France
 
  SOLEIL is both a synchrotron light source and a research laboratory at the cutting edge of experimental techniques dedicated to matter analysis down to the atomic scale, as well as a service platform open to all scientific and industrial communities. This French 2.75 GeV third generation synchrotron light source provides today extremely stable photon beams to 29 beamlines (BLs) complementary to ESRF. We report facility performance, ongoing projects and recent major achievements. A significant work was performed in order to secure the operation of the two canted 5.5 mm in-vacuum cryogenic permanent magnet undulators (CPMUs). Major R&D areas will also be discussed, and progress towards a lattice baseline for making SOLEIL a diffraction limited storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK098 A Tunable Narrowband Source in the Sub-THz and THz Range at DELTA 4534
 
  • C. Mai, B. Büsing, S. Khan, A. Meyer auf der Heide, B. Riemann, B. Sawadski, P. Ungelenk
    DELTA, Dortmund, Germany
  • M. Brosi, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • F. Frei
    PSI, Villigen PSI, Switzerland
  • C. Gerth
    DESY, Hamburg, Germany
  • M. Laabs, N. Neumann
    TU Dresden, Dresden, Germany
  • N.M. Lockmann
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Funding: Work supported by the DFG (INST 212/236-1 FUGG), the BMBF (05K13PEC, 05K16PEB) and the state of NRW.
At DELTA, a 1.5-GeV electron storage ring operated as a synchrotron light source by the TU Dortmund University, an interaction of ultrashort laser pulses with electron bunches is used to generate broadband as well as tunable narrowband radiation in the frequency range between 75 GHz and 5.6 THz. The performance of the source was studied using two different Fourier-transform spectrometers. It was demonstrated that the source can be used for the characterization and comparison of Schottky-diode based detectors, e.g., an on-chip spectrometer enabling single-shot applications.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK099 Measurement of the Laser-Induced Energy Modulation Amplitude at the Short-Pulse Facility at DELTA 4538
 
  • A. Meyer auf der Heide, B. Büsing, S. Khan, N.M. Lockmann, C. Mai, B. Riemann, B. Sawadski
    DELTA, Dortmund, Germany
 
  The short-pulse facility at the synchrotron light source DELTA operated by the TU Dortmund University employs coherent harmonic generation (CHG) to provide ultrashort pulses in the vacuum ultraviolet and terahertz regime. Here, a laser-electron interaction results in a modulation of the electron energy which is transformed into a density modulation by a magnetic chicane. Measurements of the energy modulation amplitude with different techniques including an RF phase modulation are presented. A combination of the results allow to estimate the energy spread of the electron beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK106 Architectural Considerations for Recirculated and Energy-Recovered Hard XFEL Drivers 4560
 
  • D. Douglas, S.V. Benson, T. Powers, Y. Roblin, T. Satogata, C. Tennant
    JLab, Newport News, Virginia, USA
  • D. Angal-Kalinin, N. Thompson, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • T.K. Charles
    CERN, Geneva, Switzerland
  • R.C. York
    FRIB, East Lansing, Michigan, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
A confluence of events motivates discussion of design options for hard XFEL driver accelerators. Firstly, multiple superconducting radio-frequency (SRF) driven systems are now online (European XFEL), in construction (LCLS-II), or in design (MARIE); these provide increasing evidence of the transformational potential they offer for fundamental science with its concomitant benefits. Secondly, operation of 12 GeV CEBAF* validates use of recirculation in high energy SRF linacs. Thirdly, advances in the analysis and control of effects such as coherent synchrotron radiation (CSR) and the microbunching instability (uBI) have been recently achieved. Collectively, these developments offer insights providing extended facility science reach, reduced costs, multiplicity (i.e., support of numerous FELs operating over a range of wavelengths), and enhanced scalability and upgradability (to higher powers and energies). We will discuss the relationship amongst the various threads, and indicate how they inform design choices for the system architecture of an option for the UK-XFEL** - that of a staged multi-user X-ray FEL and nuclear physics facility based on a multi-pass recirculating SRF CW linac.
*M. Spata, "12 GeV CEBAF Initial Operations and Challenges", these proceedings.
**P. Williams et al., Proc. FLS2018, Shanghai, China (March 2018).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK113 From Coherent Harmonic Generation to Steady State Microbunching 4583
SUSPF005   use link to see paper's listing under its alternate paper code  
 
  • X.J. Deng, W.-H. Huang, T. Rui, C.-X. Tang
    TUB, Beijing, People's Republic of China
  • A. Chao, D.F. Ratner
    SLAC, Menlo Park, California, USA
  • J. Feikes, M. Ries
    HZB, Berlin, Germany
  • R. Klein
    PTB, Berlin, Germany
 
  Steady state microbunching (SSMB) is an electron storage ring based scheme proposed by Ratner and Chao to generate high average power narrow band coherent radiation with wavelength ranging from THz to EUV. One key step towards opening up the potential of SSMB is the experimental proof of the SSMB principle. In this paper, the SSMB experiment planned and prepared by a recently established collaboration is presented starting from a modified coherent harmonic generation (CHG). Single particle dynamics of microbunching in an electron storage ring are analyzed. Though oriented for CHG and SSMB, some of the effects analyzed are also important in cases like bunch slicing, bunch compression, FEL beam transport lines etc, in which precise longitudinal phase space manipulations are involved. These dynamics together with some SSMB related collective effects are to be investigated on the storage ring MLS in Berlin.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK120 Hefei Advanced Light Source: A Future Soft X-Ray Diffraction-Limited Storage Ring at NSRL 4598
 
  • L. Wang, Z.H. Bai, N. Hu, H.T. Li, W. Li, G. Liu, Y. Lu, Q. Luo, D.R. Xu, W. Xu, P.H. Yang, Z.H. Yang, S.C. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  To meet the fast-growing demands for high-quality low-energy photon beams, a new synchrotron radiation light source conception was brought forward several years ago by National Synchrotron Radiation Laboratory, which was named Hefei Advanced Light Source (HALS). The dominant radiation of HALS will be located in the VUV and soft X-ray region, which will be complementary with that of SSRF and HEPS. Except for high brilliance, high transverse coherence will be another signature feature of HALS. To achieve these goals, a multi-bend achromat based diffraction-limited storage ring was adopted as the main body of HALS. The general description and preliminary design of HALS will be briefly presented in this paper. Under the support of the Chinese Academy of Sciences and local government, the preliminary research and development (R&D) for HALS is undergoing. Several key technologies will be developed in the R&D project, which will lay good foundation for the construction of HALS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK120  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK121 Design of the Second Version of the HALS Storage Ring Lattice 4601
 
  • Z.H. Bai, W. Li, L. Wang, P.H. Yang, Z.H. Yang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  In this paper, a new multi-bend achromat (MBA) lat-tice concept that we recently proposed for diffraction-limited storage rings is described, where two pairs of interleaved dispersion bumps are created in each cell and also most of the nonlinear effects produced by the sextupoles located in these bumps can be cancelled out within one cell. Following this concept, two 7BA lattices have been designed for the Hefei Advanced Light Source storage ring as the second version lattic-es, one with uniform dipoles and the other with nonu-niform dipoles. The latter has a lower natural emit-tance of 23 pm·rad, in which longitudinal gradient bends and anti-bends are employed. The optimized nonlinear dynamics for these two lattices are rather good, and especially the dynamic momentum aperture can be larger than 8% without off-momentum tunes crossing non-structure half-integer resonance lines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK129 Lattice Tweaking Using A Tune Knob Based On Global Mechanism 4620
SUSPF008   use link to see paper's listing under its alternate paper code  
 
  • S.W. Wang, B. Li, J.L. Li, W.B. Wu, W. Xu, X. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • J.L. Li
    IHEP, Beijing, People's Republic of China
 
  The transverse tunes are important parameters for a storage ring and tune knobs are used to adjust the tunes in a specific range. Usually for large rings, a set of quadrupoles is set on the straight sections for the use of tune knob. A tune knob has been designed for the HLS-II storage ring without affecting the twiss parameters of the injection section. This paper introduces the design and online test of this tune knob. The quadrupoles are adjusted according to the simulation results and the tunes are measured and calibrated. The online test results show that the tune knob design works well on the HLS-II storage ring and can be applied for various machine studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK129  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK132 Generation of Terahertz Synchrotron Radiation Using Laser-Bunch Slicing at Hefei Light Source 4626
 
  • W. Xu, S.W. Wang, S.C. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Hefei Light Source is a second-generation low-energy synchrotron light source. The low energy machine is ca- pable of generating intense Terahertz radiation through co- herent synchrotron radiation. To realize this, one method is to shorten the bunch length to the same level of its radi- ation wavelength, e.g. by adopting low-α lattice. Another method is to modulate the electron bunch to produce mi- costructure at picosecond scale and intense Terahertz co- herent synchrotron radiation can be obtained due to the in- crease ofthebunchformfactor. This techniqueis calledthe laser bunch slicing method which introduces a laser beam into an undulator to interact with the electron bunches. In this paper we report our work on the simulation of the laser bunch slicing at Hefei Light Source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK132  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK144 Lattices for a 4th-Generation Synchrotron Light Source 4639
 
  • G. K. Shamuilov
    Uppsala University, Uppsala, Sweden
 
  Inspired by the ESRF upgrade (Extremely Brilliant Source, EBS), I present some modern lattices for a medium-sized 4th-generation synchrotron radiation source. They incorporate new elements, such as anti-bend magnets. The composed lattices are optimized using a simple double-objective algorithm. Its goal is to minimize the natural emittance and absolute chromaticities simultaneously. Then, the lattices are analyzed and compared to a version of the ESRF-EBS lattice scaled down in size. The design is performed to meet the needs of the user community of the Siberian Synchrotron and Terahertz Radiation Centre under the umbrella of the Budker Institute of Nuclear Physics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK144  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML034 Baseline Lattice for the Upgrade of SOLEIL 4726
 
  • A. Loulergue, P. Alexandre, P. Brunelle, O. Marcouillé, A. Nadji, L.S. Nadolski, R. Nagaoka, K.T. Tavakoli, M.-A. Tordeux, A. Vivoli
    SOLEIL, Gif-sur-Yvette, France
  • L. Hoummi
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Previous MBA studies converged to a lattice composed of 7BA-6BA with a natural emittance value of 200- 250 pm.rad range. Due to the difficulties of non-linear optimization in targeting lower emittance values, a decision was made to symmetrize totally the ring with 20 identical cells having long free straight sections longer than 4 m. A 7BA solution elaborated by adopting the sextupole paring scheme with dispersion bumps originally developed at the ESRF-EBS, including reverse-bends, enabling an emittance of 72 pm.rad has been defined as the baseline lattice. The sufficient on-momentum dynamic aperture obtained allows to consider off-axis injection. The linear and nonlinear dynamic properties of the lattice along with the expected performance in terms of brilliance and transverse coherence are presented. In particular, the beta functions tuned down to 1 m in both transverse planes at the center of straight sections allow matching diffraction limited photons up to 3 keV.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)