03 Novel Particle Sources and Acceleration Technologies
A17 High Intensity Accelerators
Paper Title Page
TUPMF042 Design of a High Dose Rate Micro-Focused X-Ray Source 1346
 
  • X. He, S.Q. Liao, J. Long, J. Shi, W. Wang, L. Yang
    CAEP/IFP, Mainyang, Sichuan, People's Republic of China
 
  High energy X-ray computer tomography has wide application in industry, especially in quality control of complicated high-tech equipment. In many applications, higher spatial resolution is needed to discover smaller defects. Decreasing the spot size of the X-Ray source is a promising way to get higher spatial resolution. Rhodotron have been used to produce high power CW electron beam in hundreds of kilowatts level. In this paper, we propose to use an improved Rhodotron to generate high brightness electron beam with high average power. Beam dynamics study shows that when producing tens of kilowatts electron beam, the normalized RMS emittance can be lower than 10 μm, and the relative RMS energy spread can be lower than 0.2%. The beam can be focused to a spot size of about 100μm by using a series of quadruple, and converted to X-Ray by using a rotating target within several kilowatts beam power. Improved Rhodotron proposed in this paper is a good candidate of X-ray source for high resolution high energy industrial CT systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML055 Beam Optics Designs of a Strecher Ring and a Transfer Line for J-PARC Slow Extraction 1667
 
  • M. Tomizawa, R. Muto, T. Ogitsu
    KEK, Ibaraki, Japan
  • A. Konaka
    TRIUMF, Vancouver, Canada
 
  The J-PARC main ring (MR) provides 30 GeV high intensity beams for neutrino experimental facility (NU) by fast extraction and hadron experimental facility (HD) by slow extraction. It is a serious issue to ensure sufficient integrated proton number on target (POT) for each facility. A stretcher ring (ST) can solve this serious problem. A beam accelerated by the MR is transferred to the ST and is slowly extracted over several second. While the beam is slowly extracted in the ST, the MR can accelerate and deliver a beam to the NU. The ST is put above the MR and fitted in the MR tunnel. Arc sections in the ST consist of superconducting combined function magnets (dipole, quadrupole and sextupole components), and separated function quadruple and sextupole magnets (hybrid lattice). A 30 GeV beam transfer line (BT) from the MR to the ST uses superconducting combined magnets with dipole and quadrupole functions to shorten the BT. The transferred beam is injected into an arc section in the ST. The adoption of the superconducting magnets in the ST and the BT saves operation cost drastically. Beam optics designs for the ST and the BT will be described in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML006 Using Drive Rods in Inductions Cells to Reduce the Beam Break Up Instability 4658
 
  • N. Pogue, T.L. Houck, B.R. Poole
    LLNL, Livermore, California, USA
 
  The Beam Breakup Instability is a critical effect to reduce in high current induction accelerators. The RF modes generated inside the induction cells can deflect or degrade subsequent beam traversing the cell. Significant effort has been invested in minimizing the effect over several decades. One mechanism that is known to reduce the transverse impedance, the main observable experimentally which directly relates to the BBU amplitude, is to introduce ferrites to absorb the fields. Another, less investigated mechanism, is to disturb the modes symmetry by inserting the drive rods at the proper locations in the cell. This paper will show that the drive rods can dramatically reduce the transverse impedance, and will show that simulations are maturing towards predicting this effect. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML020 The First Results of Trial Operation and Performance Improve of the 100 MeV/ 100 kW Electron Linear Accelerator of the NSC KIPT SCA Neutron Source 4693
 
  • A.Y. Zelinsky, O.E. Andreev, V.P. Androsov, O. Bezditko, O.V. Bykhun, A.N. Gordienko, V.A. Grevtsev, A. Gvozd, V.E. Ivashchenko, I.I. Karnaukhov, I.M. Karnaukhov, V.P. Lyashchenko, M. Moisieienko, A.V. Reuzayev, D.V. Tarasov, V.I. Trotsenko
    NSC/KIPT, Kharkov, Ukraine
  • Y.L. Chi
    IHEP, Beijing, People's Republic of China
 
  The NSC KIPT SCA Neutron Source uses 100 MeV/ 100 kW electron linear accelerator as a driver for the generation of the initial neutrons. The trial operation of the accelerator was started in 2018. To provide design electron beam parameters is the primary task of the first stage of the trial operation. During the first stage of the accelerator operation the following tasks were under consideration: minimization of the electron beam losses along accelerator, providing of the stable electron beam pulse current, adjustment of the electron beam position along accelerator and providing of the uniform electron beam distribution at the tungsten neutron generating target. The main results of the accelerator operation and methods of performance improve are described in the paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)