03 Novel Particle Sources and Acceleration Technologies
A21 Secondary Beams
Paper Title Page
TUPML020 Beamline Design of EMuS - the First Experimental Muon Source in China 1574
 
  • Y. Bao, Y.K. Chen, Z.L. Hou, Y.P. Song, J.Y. Tang, N. Vassilopoulos, Y. Yuan, G. Zhao, L. Zhou
    IHEP, Beijing, People's Republic of China
  • H.T. Jing
    IHEP CSNS, Dongguan, People's Republic of China
 
  Funding: This work is supported by National Natural Science Foundation of China under Grants 11575217 and 11527811. Yu Bao thanks Hundred Talents Program of Chinese Academy of Science.
We report the beamline design of the Experimental Muon Source (EMuS) project in China. Based on the 1.6 GeV/100 kW proton accelerator at the Chinese Spallation Neutron Source (CSNS), EMuS will extract one bunch from every 10 double-bunch proton pulses to hit a stand-alone target sitting in a superconducting solenoid, and the secondary muons/pions are guided to the experimental area. The beamline is designed to provide both a surface muon beam and a decay muon beam, so that various experiments such as muSR applications and particle/nuclear physics experiments can be conducted. In this work we present the conceptual design and simulation of the beamlines, and discuss the future aspects of the project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML052 Characterisation of the Second Stable Orbit Generated by Transverse Resonance Island Buckets (TRIBs) 1656
 
  • F. Kramer, P. Goslawski, A. Jankowiak, M. Ries, M. Ruprecht, A. Schälicke
    HZB, Berlin, Germany
 
  Funding: Federal Ministry of Education and Research
Operating the storage ring near a transverse tune resonance can generate TRIBs in the corresponding phase space, providing a second orbit twisting around the standard orbit. TRIBs as a bunch separation scheme in combination with the proposed variable bunch length storage ring BESSY VSR* represent a promising alternative to dedicated single or few bunch operation modes. The injection efficiency and stability of the two orbits at BESSY II and MLS are almost on par with and the lifetime at about 70 % of the standard user mode. Results from simulations and measurements of our present island optics will be presented. Beam parameters like the betatron motion, dispersion and emittance of both the core and island orbit will be discussed as well as the separation between the island and the core orbit. At BESSY II a dedicated test week together with the friendly users took place in the first week of February, 2018.
* A. Jankowiak et al., eds., BESSY VSR Technical Design Study, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Germany, June 2015. DOI: 10.5442/R0001
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML075 Development of Target/ion Source for Li-8 Beam at KOMAC* 1718
 
  • J.J. Dang, Y.-S. Cho, H.S. Kim, H.-J. Kwon, P. Lee, S. Lee, Y.G. Song
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work has been supported through KOMAC operation fund of KAERI by MSIT and the NRF of Korea grant funded by the Korea government (MSIT) (No. NRF-2017M2A2A6A02071070).
A target/ion source (TIS) for Li-8 isotope beam has been developed at Korea Multi-purpose Accelerator Complex (KOMAC). The TIS was designed based on various numerical studies such as Monte Carlo simulation for Li-8 yield estimation, an ionization efficiency calculation of a surface ionization ion source and thermal analysis by a power balance model. Then, it was fabricated that a prototype of the TIS which consists of a beryllium oxide (BeO) target, a graphite target container, a tantalum target heater and a rhenium surface ion source. Also, the target heater and the surface ion source were heated to designed operation temperatures. In addition, it has been designed and constructed that an online test facility including Li-8 beam optics and diagnostics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)