04 Hadron Accelerators
T19 Collimation
Paper Title Page
TUPAF029 Observation of Fast Losses in the LHC Operation in 2017 740
  • A.A. Gorzawski, N. Fuster-Martínez, S. Redaelli, C. Xu, C. Zamantzas
    CERN, Geneva, Switzerland
  • R.B. Appleby
    UMAN, Manchester, United Kingdom
  • H. Garcia Morales
    Royal Holloway, University of London, Surrey, United Kingdom
  Four diamond detectors that provide beam loss measurements with time resolution in the nanosecond range were added in the vicinity of the primary collimators of the Large Hadron Collider (LHC). This is a powerful diagnostic tool that provides the unique chance to measure bunch-by-bunch losses. The operation of the LHC in 2017 presented several unusual events of fast, high intensity beam losses, many of them captured by the diamond detectors in the betatron cleaning region. In this paper we review some of the relevant loss cases that were analyzed in the wider scope of determining the source of the instability generating these losses. We show few of the possible applications of this detectors in daily operations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPAF046 Conceptual Design of a Collimation System for the CERN Super Proton Synchrotron 802
  • M. Patecki, A. Mereghetti, D. Mirarchi, S. Redaelli
    CERN, Geneva, Switzerland
  The Super Proton Synchrotron (SPS) is the last accelerator in the LHC Injectors Chain. Its performance is constantly being improved in frame of the LHC Injectors Upgrade (LIU) Project in order to prepare it for the future HL-LHC (High Luminosity LHC) operation. One of the LIU goals is to nearly double the intensity extracted from the SPS, up to 2.32×1011 p/bunch. In recent years, nearly 10% of losses are observed for nominal intensity and LHC-type beams; they grow to about 20% for the intensity approaching the HL-LHC target. Beam losses imply activation and aging of the SPS hardware; the possibility to add a collimation system is being considered to mitigate this problem. In this paper we present studies of a collimation system design for the SPS. The concept is based on a primary horizontal collimator located in an available position with high enough dispersion, and a secondary collimator to intercept the particles leaking out from the primary collimator. Performance of the proposed collimation system is evaluated by means of numerical simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPAF084 The First-of-Series SIS100 Cryocatcher 930
  • L.H.J. Bozyk, Sh. Ahmed, P.J. Spiller
    GSI, Darmstadt, Germany
  The superconducting heavy ion synchrotron SIS100 of the FAIR-facility will be equipped with 60 cryocatcher, to suppress dynamic vacuum effects. A prototype cryocatcher has been designed, manufactured and underwent several tests. The results yielded in the design of the series cryocatcher. Recently, the First-of-Series cryocatcher has been manufactured and tested. Results from the manufacturing process and the site acceptance tests, including cryogenic test with liquid helium are presented. The FoS cryocatcher sucessfully passed all tests and the series production will be released.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPAK018 Study on the Collimation Method for a Future Proton-Proton Collider 1004
  • J.Q. Yang, Y. Bao, J.Y. Tang, J.Y. Tang, Y. Zou
    IHEP, Beijing, People's Republic of China
  As the second phase of CEPC-SPPC project, SPPC (Super Proton-Proton Collider) is to explore new physics beyond the standard model in the energy frontier with a center-of-mass energy of 75 TeV. In order to handle extremely-high stored energy in beam, the collimation system of extremely high efficiency is required for safe operation. SPPC has been studying a collimation method which arranges both the transverse and momentum collimations in one long straight section. In this way, the downstream momentum collimation section can clean those particles related to the single diffractive effect in the transverse collimation section thus eliminate beam losses in the arc section. In addition, one more collimation stage is obtained with use of special superconduct-ing quadrupoles in the transverse collimation section. Multiple particle simulations have proven the effectiveness of the methods. This paper presents the study results on the collimation scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)