05 Beam Dynamics and EM Fields
D08 High Intensity in Linear Accelerators - Space Charge, Halos
Paper Title Page
THPAF032 Simulation Study of an RF Injector for the LWFA Configuration at EuPRAXIA 3025
  • J. Zhu, R.W. Aßmann, A. Ferran Pousa, B. Marchetti, P.A. Walker
    DESY, Hamburg, Germany
  The Horizon 2020 Project EuPRAXIA (EuropeanPlasma Research Accelerator with eXcellence In Applications) aims at producing a design report of a highly compact and cost-effective European facility with multi-GeV electron beams using a plasma accelerator. LWFA with external injection from an RF accelerator is one of the most promising configurations. In order to achieve the goal parameters for the 5 GeV, 30 pC electron beam at the entrance of the undulator, a high-quality electron beam with bunch length of less than 10 fs (FWHM) and matched beta functions (~1 mm) at the plasma entrance is required. In addition, from the compactness point of view, the injection energy is desired to be as low as possible. A hybrid compression scheme is considered in this paper and a detailed start-to-end simulation is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPAK008 Space Charge and Microbunching Studies for the Injection Arc of MESA 3221
SUSPF083   use link to see paper's listing under its alternate paper code  
  • A. Khan, O. Boine-Frankenheim
    Institut Theorie Elektromagnetischer Felder, TU Darmstadt, Darmstadt, Germany
  • C.P. Stoll
    IKP, Mainz, Germany
  For intense electron bunches traversing through bends, as for example the recirculation arcs of an ERL, space charge (SC) may result in beam phase space deterioration. SC modifies the electron transverse dynamics in dispersive regions along the beam line and causes emittance growth for mismatched beams or for specific phase advances. On the other hand, longitudinal space charge together with dispersion can lead to the microbunching instability. The present study focuses on the 180° low energy (5 MeV) injection arc lattice for the multi-turn Mainz Energy-recovering Superconducting Accelerator (MESA), which should deliver a CW beam at 105 MeV for physics experiments with an internal target. We will discuss matching conditions with space charge together with the estimated microbunching gain for the arc. The implication for the ERL operation will be outlined, using 3D envelope and tracking simulations.
Supported by the DFG through GRK 2128
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPAK019 Beam Dynamics of the First Beams for IFMIF-EVEDA RFQ Commissioning 3246
  • L. Bellan, C. Baltador, M. Comunian, E. Fagotti, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • T. Akagi
    KEK, Ibaraki, Japan
  • B. Bolzon, N. Chauvin
    CEA/DSM/IRFU, France
  • H. Dzitko
    F4E, Germany
  • K. Kondo, M. Sugimoto
    QST, Aomori, Japan
  • I. Podadera
    CIEMAT, Madrid, Spain
  • F. Scantamburlo
    IFMIF/EVEDA, Rokkasho, Japan
  The installation of the IFMIF-EVEDA RFQ, MEBT, LEBT, source and beam dump was completed in September 2017. The beam dynamics of the first beams for the IFMIF-EVEDA RFQ commissioning is presented. Moreover, a proposal for the CW RFQ steady state commissioning is shown, with a focus on the beam dynamics challenges of the beam transport after the RFQ.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPAK085 3D Space Charge in Bmad 3428
  • C.E. Mayes
    SLAC, Menlo Park, California, USA
  • R.D. Ryne
    LBNL, Berkeley, California, USA
  • D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  We present a parallel fast Fourier transform based 3D space charge software library based on integrated Green functions. The library is open-source, and has been structured to easily be used by existing beam dynamics codes. We demonstrate this by incorporating it with the Bmad toolkit for charged particle simulation, and compare with analytical formulas and well-established space charge codes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)