07 Accelerator Technology
T20 Targetry
Paper Title Page
Multi-MW Targets for Next-Generation Accelerators  
  • R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  Next-generation accelerator facilities will require multi-MW targets for producing their required experimental particles and beams. This talk will discuss a variety of critical target technology challenges resulting from these increasing power levels and describe research & development into new approaches to address these challenges.  
slides icon Slides MOZGBE2 [11.710 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPMF084 Design, Prototyping Activities and Beam Irradiation Test for the New nTOF Neutron Spallation Target 2582
  • R. Esposito, M. Bergeret, J. Busom, M.E.J. Butcher, M. Calviani, R. Cimmino, T. Coiffet, J.P.C. Espadanal, L. Gentini, R. Illan Fiastre, V. Maire, F. Ogallar Ruiz, A. Perillo-Marcone, S. Sgobba, M.A. Timmins, C. Torregrosa, E. Urrutia, V. Vlachoudis
    CERN, Geneva, Switzerland
  • R. Logé
    EPFL, Lausanne, Switzerland
  A third-generation neutron spallation target for the neutron time-of-flight facility at CERN (nTOF) is currently undergoing the design and prototyping stage. The new design aims at improving reliability, increasing beam intensity on target and avoiding issues encountered in the current generation target, in particular the contamination of the cooling system water with radioactive spallation products coming from washing out lead. After a preliminary design and an initial prototyping stage*, a baseline solution has been defined consisting in a pure lead target core contained in a Ti-6Al-4V cladding and embedded in a massive Pb block. A backup solution has also been defined, consisting in a Ta-cladded W core embedded in a Pb block. Both solutions are currently undergoing the detailed design stage. This contribution details the prototyping activity, the robustness studies for accidental scenarios and the design of a beam irradiation test on prototypes of the target core.
R. Esposito et al., "Design of the new CERN nTOF neutron spallation target: R&D and prototyping activities," in Proc. of IPAC'17, Copenhagen, May 2017.
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPMG001 Engineering Design and Prototyping of the New LIU PS Internal Beam Dumps 2600
  • G. Romagnoli, J.A. Briz Monago, M.E.J. Butcher, M. Calviani, D.G. Cotte, Y. C. Coutron, J.J. Esala, E. Grenier-Boley, J. Hansen, A. Huschauer, A. Masi, F.-X. Nuiry, D. Steyart, V. Vlachoudis
    CERN, Geneva, Switzerland
  For the LHC Injectors Upgrade (LIU) at CERN, the two Proton Synchrotron (PS) internal dumps are redesigned and upgraded for the new high intensity/brightness beams. The dumps are installed as active elements in the lattice in straight sections between the main bending magnets. The dumps are moved into the beam when requested by operation and shave the circulating beam turn by turn stopping the beam after about 6 ms. The shaving induces a very localized beam energy deposition on the dump surface in a thickness of tens of microns. A completely new approach has been developed with FLUKA to simulate beam shaving, coupled with ANSYS to define a new dump core design. This paper presents the design of the dump based on operational constraints such as cycling 200 000 times per year for 20 years, limited access for maintenance or reaching the beam trajectory in 150 ms. These constraints had a major impact on the technological choices. The new dump core is made of a low-density graphite block followed by a denser copper alloy (CuCr1Zr) one. Water circuits, bonded with Hot Isostatic Pressing, are cooling the core in ultra-high vacuum. The core is moved by a spring-based actuation mechanism.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMG001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPMG002 Beam Dump Facility Target: Design Status and Beam Tests in 2018 2604
  • E. Lopez Sola, O. Aberle, P. Avigni, L. Bianchi, J. Busom, M. Calviani, M. Casolino, J.P.C. Espadanal, M.A. Fraser, S. Girod, B. Goddard, D. Grenier, M. Guinchard, C. Heßler, R. Illan Fiastre, R. Jacobsson, M. Lamont, A. Ortega Rolo, B. Riffaud, G. Romagnoli, L. Zuccalli
    CERN, Geneva, Switzerland
  The Beam Dump Facility (BDF) Project, currently in its design phase, is a proposed general-purpose fixed target facility at CERN, dedicated to the Search for Hidden Particles (SHiP) experiment in its initial phase. At the core of the installation resides the target/dump assembly, whose aim is to fully absorb the high intensity 400 GeV/c SPS beam and produce charmed mesons. In addition to high thermo-mechanical loads, the most challenging aspects of the proposed installation lie in very high energy and power density deposition that are reached during operation. In order to validate the design of the BDF target, a scaled prototype is going to be tested during 2018 in the North Area at CERN, upstream the existing beryllium primary targets. The prototype testing under representative beam scenarios will allow having an insight of the material response in an unprecedented regime. Online monitoring and an extensive Post Irradiation Experimental (PIE) campaign are foreseen. The current contribution will detail the design and handling aspects of the innovative Target Complex as well as the design of the BDF target/dump core and the design and construction of the prototype target assembly.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMG002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPAL117 Development of a Proton-to-Neutron Converter for Radioisotope Production at ISAC-TRIUMF 3917
SUSPL088   use link to see paper's listing under its alternate paper code  
  • L. Egoriti, P.G. Bricault, T. Day Goodacre, A. Gottberg
    TRIUMF, Vancouver, Canada
  • M. Delonca, R.M. Dos Santos Augusto, J.P. Ramos, S. Rothe, T. Stora
    CERN, Geneva, Switzerland
  • M. Dierckx, D. Houngbo, L. Popescu
    SCK•CEN, Mol, Belgium
  • R.M. Dos Santos Augusto
    LMU, München, Germany
  At ISAC-TRIUMF, a 500 MeV proton beam is impinged upon thick targets to induce nuclear reactions to pro-duce reaction products that are delivered as a Radioactive Ion Beam (RIB) to experiments. Uranium carbide is among the most commonly used target materials which produces a vast radionuclide inventory coming from both spallation and fission- events. This can also represent a major limitation for the successful delivery of certain RIBs to experiments since, for a given mass, many isobar-ic isotopes are to be filtered by the dipole mass separator. These contaminants can exceed the yield of the isotope of interest by orders of magnitude, often causing a significant reduction in the sensitivity of experiments or even making them impossible. The design of a 50 kW proton-to-neutron (p2n) converter-target is ongoing to enhance the production of neutron-rich nuclei while significantly reducing the rate of neutron-deficient contaminants. The converter is made out of a bulk tungsten block which converts proton beams into neutrons through spallation. The neutrons, in turn, induce pure fission in an upstream UCx target. The present target design and the service infrastructure needed for its operation will be discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
SUSPL087   use link to see paper's listing under its alternate paper code  
  • M. S. Cervantes, P. Fouquet-Métivier, A. Gottberg, P. Kunz, L. Lambert, A. Mjøs, J. Wong
    TRIUMF, Vancouver, Canada
  • M. S. Cervantes
    UVIC, Victoria, Canada
  • P. Fouquet-Métivier
    ENSCM, Montpellier, France
  • A. Gottberg
    Victoria University, Victoria, B.C., Canada
  TRIUMF has the objective of producing radioactive isotope beams (RIB) using the ISOL method. Radioactive isotopes are used in experiments in different areas of science. At the TRIUMF-ISAC facility, a 500 MeV proton driver beam impinges onto different targets and induces nuclear reactions in them. The isotopes obtained in this way then diffuse out of the target material before they are ionized and extracted to form an isotope beam. Targets of uranium carbide with excess of graphite (UCx) are the most requested targets at TRIUMF. ARIEL, TRIUMF's flagship project, aims at increasing the radioactive isotope production capabilities to satisfy the growing demand of radioactive isotopes. The current production method of UCx targest does not have the means to supply enough UCx targets to satisfy ARIEL's demand, therefore, a new method for efficient UCx target material synthesis is being developed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML131  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)