08 Applications of Accelerators, Tech Transfer and Industrial Relations
U01 Medical Applications
Paper Title Page
MOPML014 Status of the Commissioning of the LIGHT Prototype 425
 
  • A. Degiovanni, J. Adam, D. Aguilera Murciano, S. Ballestrero, A. Benot-Morell, R. Bonomi, F.C.M. Cabaleiro Magallanes, M. Caldara, G. D'Auria, G. De Michele, M. Esposito, S. Fanella, D. Fazio, D.A. Fink, Y. Fusco, M. Gonzalez, P. Gradassi, A. Jeff, L. Kobzeva, G. Levy, G. Magrin, A. Marraffa, A. Milla, R. Moser, P. Nadig, G. Nuessle, A. Patino-Revuelta, T. Rutter, F. Salveter, A. Samoshkin, L. Wallet
    A.D.A.M. SA, Meyrin, Switzerland
  • M. Cerv, V.A. Dimov, L.S. Esposito, S. H. Gibson, M. Giunta, Ye. Ivanisenko, V. F. Khan, S. Magnoni, C. Mellace, J.L. Navarro Quirante, H. Pavetits, PPA. Paz Neira, P. Stabile, K. Stachyra, D. Ungaro, A. Valloni, C. Zannini
    AVO-ADAM, Meyrin, Switzerland
 
  The company A.D.A.M. (Application of Detectors and Accelerators to Medicine), a CERN spin-off, is working on the construction and testing of its first linear accelerator for medical application: LIGHT (Linac for Image-Guided Hadron Therapy). LIGHT is an innovative high frequency proton linac designed to accelerate proton beams up to 230 MeV for protontherapy applications. The LIGHT accelerator consists of three different linac sections: a 750 MHz Radio Frequency Quadrupole (RFQ) accelerating the beam up to 5 MeV; a 3 GHz Side Coupled Drift Tube Linac (SCDTL) up to 37.5 MeV; and a 3 GHz Cell Coupled Linac (CCL) section up to 230 MeV. The compact and modular design is based on cutting edge technologies developed for particle colliders and adapted to the needs of hadron therapy beams. A prototype of LIGHT is presently under commissioning at CERN. This paper describes the design aspects and the different stages of installation and commissioning of the LIGHT prototype with emphasis on beam tests results obtained during the past year at different energies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML015 Simulations and Measurements of the CCL Modules of the LIGHT Accelerator 429
 
  • V. F. Khan, G. De Michele, S. Fanella, S. H. Gibson, Ye. Ivanisenko, C. Mellace, J.L. Navarro Quirante, C. Zannini
    AVO-ADAM, Meyrin, Switzerland
  • M. Esposito, P. Gradassi
    CERN, Geneva, Switzerland
 
  A 230 MeV proton LINAC system for medical applications is being developed and commissioned for the LIGHT (Linac Image Guided Hadron Therapy) project by AVO-ADAM. The LINAC system consists of a 750 MHz RFQ (Radio frequency quadrupole) for the low energy proton acceleration, 2998 MHz SCDTL (Side Coupled Drift Tube Linacs) for the medium energy and 2998 MHz CCL (Coupled Cavity Linacs) for the high energy. In particular, the CCL accelerating modules are used in the energy range from 37.5 - 230 MeV. In this paper we discuss the 3D EM (electro-magnetic) simulation results and measurements of the CCL modules.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML020 Numerical Simulations to Evaluate and Compare the Performances of Existing and Novel Degrader Materials for Proton Therapy 435
SUSPL096   use link to see paper's listing under its alternate paper code  
 
  • R. Tesse, A. Dubus, N. Pauly
    ULB - FSA - SMN, Bruxelles, Belgium
  • C. Hernalsteens, W.J.G.M. Kleeven, F. Stichelbaut
    IBA, Louvain-la-Neuve, Belgium
 
  The performance of the energy degrader in terms of beam properties directly impacts the design and cost of cyclotron-based proton therapy centers. The aim of this study is to evaluate the performances of different existing and novel degrader materials. The quantitative estimate is based on detailed Geant4 simulations that analyze the beam-matter interaction and provide a determination of the beam emittance increase and transmission. Comparisons between existing (aluminium, graphite, beryllium) and novel (boron carbide and diamond) degrader materials are provided and evaluated against semi-analytical models of multiple Coulomb scattering. The results showing a potential in emittance reduction for novel materials are presented and discussed in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML021 Shorter Treatment Time by Intensity Modulation with a Betatron Core Extraction 439
 
  • M. G. Pullia, E. Bressi, G.M.A. Calvi, M. Donetti, L. Falbo, S. Foglio, V. Lante, A. Parravicini, C. Priano, E. Rojatti, S. Savazzi, C. Viviani
    CNAO Foundation, Pavia, Italy
 
  The CNAO (National Center for Oncological Hadrontherapy) main accelerator is a synchrotron capable to accelerate carbon ions up to 400 MeV/u and protons up to 250 MeV. Three treatment rooms are available and are equipped with horizontal beam lines; one of the treatment rooms also features a vertical treatment line to allow additional treatment ports. All of the beamlines are equipped with an active beam scanning system for dose delivery. With such a dose distribution technique, particles are sent to different depths by changing the energy from the synchrotron and are moved transversally by means of two scanning magnets. The number of particles to be deposited in each position varies strongly within the same iso-energetic layer. Part of the dose needed in a given position is in fact delivered by particles directed to deeper layers. In order to maintain the required precision on the number of particles delivered to each spot, the intensity is reduced when spots that require low number of particles are present in a layer. A method to shorten the irradiation time based on variable intensity within the same layer is presented that works also with a betatron based extraction scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML023 Very-High Energy Electron (VHEE) Studies at CERN's CLEAR User Facility 445
SUSPL093   use link to see paper's listing under its alternate paper code  
 
  • A. Lagzda, R.M. Jones
    UMAN, Manchester, United Kingdom
  • A. Aitkenhead, K. Kirkby, R. MacKay, M. Van Herk
    The Christie NHS Foundation Trust, Manchester, United Kingdom
  • R. Corsini, W. Farabolini
    CERN, Geneva, Switzerland
 
  Funding: Science and Technology Facilities Council (STFC) - United Kingdom
Here we investigate how inserts of various densities (0.001-2.2 g/cm3) affect the dose distribution properties of VHEE beams at ~150 MeV. A range variation comparison was also made with clinical proton beams using TOPAS/GEANT4 Monte Carlo simulations. In addition, we assess the viability of scattering foils for optimizing the size of VHEE beams for radiotherapy purposes. The experiments were conducted at CERN's CLEAR user facility.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML024 Implementation of a Non-Invasive Online Beam Monitor at a 60 MeV Proton Therapy Beamline 449
SUSPL095   use link to see paper's listing under its alternate paper code  
 
  • R. Schnuerer, C.P. Welsch, S.L. Yap, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • O. Girard, G.J. Haefeli
    EPFL, Lausanne, Switzerland
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  To fully exploit the advantageous dose distribution profiles of ion radiotherapy, an exact knowledge of the beam properties through online beam monitoring is essential, ensuring thus an effective dose delivery to the patient. One potential candidate for an online beam monitor is the LHCb Vertex Locator (VELO). This detector, originally developed for the LHCb experiment, has been adapted to the specific conditions of the clinical environment in a proton therapy centre. The semicircular design and position of its sensitive silicon detector offers a non-invasive way to measure the beam intensity without interfering with the beam core. In this contribution, modifications for VELO are described. The detector is synchronized with the readout of a locally-constructed Faraday Cup and the 25.7 MHz RF frequency of the cyclotron at the Clatterbridge Cancer Centre (CCC). Geant4 Monte Carlo simulations investigate the integration of the detector in the treatment line and behaviour of the beam during delivery. The capability of VELO as a beam monitor will be assessed by measuring the beam current and by monitoring the beam profile along the beamline this summer.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML025 Slow Extraction Optimization at the MedAustron Ion Therapy Center: Implementation of Front End Acceleration and RF Knock Out 453
 
  • A. De Franco, L. Adler, F. Farinon, N. Gambino, G. Guidoboni, G. Kowarik, M. Kronberger, C. Kurfürst, S. Myalski, S. Nowak, M.T.F. Pivi, C. Schmitzer, I. Strašík, P. Urschütz, A. Wastl
    EBG MedAustron, Wr. Neustadt, Austria
  • L.C. Penescu
    Abstract Landscapes, Montpellier, France
 
  Funding: This project has received funding from the European Union's Horizon 2020 research and Innovation programme under the Marie Skłodowska-Curie grant agreement No 675265.
MedAustron is a synchrotron-based ion therapy center allowing tumour treatment with protons and other light ion species, in particular C6+. Commissioning of all fixed lines, two horizontal and one vertical, has been completed for protons and in parallel to the commissioning of a gantry and C6+, a facility upgrade study is progressing. The upgrade study encompasses the optimization of the slow extraction mechanism by employing the RF empty bucket channeling and RF Knock Out techniques. The former is a front end acceleration technique that suppress spill ripples, fundamental to safely operate the machine at the highest intensities. The latter is an alternative extraction technique which opens up interesting possibilities for fast beam energy and intensity modulations. In this work, we quantify spill smoothening effect achieved with the first and report the results of a feasibility study of the second using a Schottky monitor as a transverse kicker.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML027 Status of Carbon Commissioning of the MedAustron Therapy Accelerator 457
 
  • C. Schmitzer, L. Adler, A. De Franco, F. Farinon, N. Gambino, G. Guidoboni, M. Kronberger, C. Kurfürst, S. Myalski, S. Nowak, M.T.F. Pivi, I. Strašík, A. Wastl
    EBG MedAustron, Wr. Neustadt, Austria
  • L.C. Penescu
    Abstract Landscapes, Montpellier, France
 
  The MedAustron therapy accelerator is intended to treat cancer patients with proton and carbon beams of 62-252 MeV and 120-400 MeV respectively. The accelerator features three Supernanogan ECR ion sources, a 400 keV/u RFQ and a 7 MeV/u interdigital H-mode Linac. A middle energy beam transfer line also serves as injector into a 77m synchrotron from which the beam may be transferred to 4 different irradiation rooms, 3 of which are dedicated to medical treatment. The therapy accelerator is in clinical operation since end 2016 and is currently solely configured for the use of protons. The next clinical objective is to enable treatments using C6+ ions which triggered the carbon commissioning of the accelerator in 2017. This paper will discuss the latest results from carbon commissioning in the different sections of the accelerator, achieved efficiencies and outlook on future carbon activities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML033 Data Supply of Accelerator Devices - Data Management of Device Process Data at a Medical Accelerator 477
 
  • M. Galonska, R. Cee, Th. Haberer, K. Höppner, J.M. Mosthaf, A. Peters, S. Scheloske, C. Schömers
    HIT, Heidelberg, Germany
 
  HIT is the first dedicated proton and carbon cancer therapy facility in Europe. It uses the full 3D intensity controlled raster scanning dose delivery method of pencil beams with ion beams of 48 - 430 MeV/u provided by a linac-synchrotron-system. Ion beams in this wide range of energies, different beam sizes, and intensities have to be provided by the control system to all treatment rooms at any time with high accuracy, stability, and reproducibility. This paper briefly reflects some aspects of the data supply, i. e. the settings of accelerator devices at a medical accelerator. This includes the generation of control data, storage, and data recovery routines, which have been developed at HIT in the recent years. That is in particular the management of verified therapy data and settings, which are stored in a non-volatile memory of the device controllers, and – as a backup – in a database and which are protected against unintended changes for safety reasons.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML035 Betatron Frequencies in Cotangential Trajectory Accelerator for Proton Beam Therapy 485
 
  • T. Aoki, F. Ebina, C. Hori, Y. Nakashima, T. Seki
    Hitachi Ltd., Ibaraki-ken, Japan
  • T. Hae
    Hitachi Ltd., Hitachi Research Laboratory, Ibaraki-ken, Japan
 
  It is important that downsizing of an accelerator for spreading proton beam therapy. The synchrotron is the solution of accelerator of proton beam therapy system which can vary energy of extracted beam in the range of from 70 MeV to 235 MeV with a merit of requiring no energy selection system. In order to downsize accelerator with above merit, we suggested smaller variable energy accelerator which have cotangential trajectories. This new type accelerator is expected to realize variability of beam energy with static main magnetic field. One of technological problems of this new type accelerator is stability of betatron oscillation. We plan to utilize week focusing field as main magnetic field, which is decreasing on the radial direction outward and uniform in longitudinal direction, of this new type accelerator. We found the main magnetic field which realizes stable betaron oscillations in the range of from 70 MeV to 235 MeV as the result of estimating the betaron oscillations in this main field by numerical calculation. We report new type accelerator concept and results of analysis of betatron oscillation in cotangential trajectories.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML039 Comparison of Two Types of Steerers Applied in Proton Therapy Gantry 488
 
  • Z.F. Zhao, Q.S. Chen, S. Hu, X. Liu, B. Qin, W. Wei
    HUST, Wuhan, People's Republic of China
  • W. Chen
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People's Republic of China
 
  A proton therapy project HUST-PTF (HUST Proton Therapy Facility) based on a 250MeV isochronous superconducting cyclotron is under development in Huazhong University of Science and Technology (HUST). Based on the optics design of the gantry, the steering magnets need to be placed in a compact structure, as well as meet the magnetic field requirement with a maximum deflection angle of ±5mrad@250MeV. In the paper, two types of steerers (O-shape and H-shape) were introduced and discussed in detail. The magnetic fringe field interference effects between quadrupoles and steerers were studied by using OPERA/TOSCA code. The result based on the contrastive analysis will give us a valuable reference to choose suitable steerers for proton therapy beamline.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML043 High Gradient Performance of an S-Band Backward Traveling Wave Accelerating Structure for Medical Hadron Therapy Accelerators 491
SUSPL097   use link to see paper's listing under its alternate paper code  
 
  • A. Vnuchenko, C. Blanch Gutiérrez, D. Esperante Pereira
    IFIC, Valencia, Spain
  • S. Benedetti, N. Catalán Lasheras, A. Grudiev, B. Koubek, G. McMonagle, I. Syratchev, B.J. Woolley, W. Wuensch
    CERN, Geneva, Switzerland
  • A. Faus-Golfe
    LAL, Orsay, France
  • T.G. Lucas, M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
  • S. Pitman
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  The high-gradient performance of an accelerating structure prototype for a medical proton linac is presented. The structure was designed and built using technology developed by the CLIC collaboration and the target application is the TULIP (Turning Linac for Proton therapy) proposal developed by the TERA foundation. The special feature of this design is to produce gradient of more than 50 MV /m in low-β accelerating structures (v/c=0.38). The structure was tested in an S-band test stand at CERN. During the tests, the structure reached over above 60 MV/m at 1.2 μs pulse length and breakdown rate of about 5x10-6 bpp. The results presented include ultimate performance, long term behaviour and measurements that can guide future optimization.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML051 First Performance Calculations for the Very High Energy Electron Radiation Therapy Experiment at PRAE 516
 
  • A. Faus-Golfe
    LAL, Orsay, France
  • R. Delorme, Y. Prezado
    IMNC, Orsay, France
  • V. Favaudon, C. Fouillade, S. Heinrich, A. Mazal, A. Patriarca, P. Poortmans, P. Verrelle
    Institut Curie - Centre de Protonthérapie d'Orsay, Orsay, France
  • A. Hrybok
    National Taras Shevchenko University of Kyiv, Radiophysical Faculty, Kiev, Ukraine
 
  The Platform for Research and Applications with Electrons (PRAE) project aims at creating a multidisciplinary R&D platform at the Orsay campus, joining various scientific communities involved in radiobiology, subatomic physics, instrumentation, particle accelerators and clinical research around a high-performance electron accelerator with beam energies up to 70 MeV and later 140 MeV, in order to perform a series of unique measurements and challenging R&D. In this paper we will report the first optics design and performance evaluations of such a multidisciplinary machine, focusing on Very High Energy Electrons (VHEE) innovative Radiation Therapy (RT) applications in particular by allowing Grid and FLASH methodologies, which are likely to represent a major breakthrough in RT. Functional specifications include beam intensities to produce dose rates from 2 Gy/min to 100Gy/sec, beam sizes with diameters from 0.5 mm to 10 cm or more of homogeneous beams and monitoring devices with accuracy in the order of 1-2% for single or multiple beams and single or multiple fractions in biological and ppreclinical applications. High energies (>140 MeV) would be also needed for GRID therapy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML058 Comparison of Water Absorbed Dose for Photons of Linac and Traceability System for Radiotherapy in China 537
 
  • K. Wang, S. Jin, Z. Wang, J. Zhang
    National Institute of Metrology, Beijing, People's Republic of China
 
  National Institute of Metrology (NIM) developed the standards of the absorbed dose to water for high-energy photon and electron beams, to support the PSDL and SSDL calibration capability in China. After the measurement of absorbed dose to water for 6, 10, and 25 MV photons of linac, NIM took part the BIPM. RI(I).K6 comparison with the Bureau International des Poids et Mesures (BIPM). The tissue phantom ratio (TPR20,10) of 6MV and 10MV photons were measured by IBA CC13 chamber and Keithley 6517B with different output dose of the Linac, and also calculated by the dose ratio (D20⁄D10) with the formula in IAEA TRS-398 report. TPR20,10 measured directly is 0.3% larger than calculated by the dose ratio D20⁄D10 . The absorbed dose to water is measured by water calorimeter with the combined standard uncertainty of 0.35%. The discrepancy of absorbed dose to water measured separately by open and sealed vessel is 0.2% at 10MV. The K6 comparison was done, the results reported as ratios of the NIM and the BIPM evaluations (and with the combined standard uncertainties given in parentheses), are 0.9917(60) at 6 MV, and 0.9941(59) at 10 MV. The quality correction factor KQ of usual used chamber was measure directly, and it is 0.3%~0.7% smaller than the data in the IAEA TRS-398 report. The typical chamber-to-chamber variations of the dose obtained with the IAEA TRS-277, TRS-398 and AAPM TG-51 were between 0.2% and 1.0% for the different photon beams. The variations of the dose obtained with IAEA TRS-398 and chambers calibrated directly by megavoltage photons were between 0.1% to 0.8%. The new standard can achieve the traceability of water absorbed dose for MV photons and will significantly reduce the uncertainty of ion chamber calibrations for Chinese radiotherapy centers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML059 Precise Beam Delivery for Proton Therapy with Dynamic Energy Modulation 540
 
  • O. Actis, A. Mayor, D. Meer, D.C. Weber
    PSI, Villigen PSI, Switzerland
  • D.C. Weber
    University of Zurich, University Hospital, Zurich, Switzerland
 
  Gantry 2 at PSI is a Pencil Beam Scanning (PBS) cyclotron based proton therapy system. PBS proved to be an effective treatment method for static tumors but for mobile targets (e.g lung) organ motion interferes with beam delivery lowering the treatment quality. A method to mitigate motion effects is to re-scan the treatment volume multiple times. The downside of re-scanning is the increase of treatment time due to high number of energy switches and magnet initializations (ramping) between scans. Our current re-scanning implementation is performed with a decreasing energy sequence and takes about 6s/scan thanks to fast energy switching of 100ms. Ramping adds 8s more leading to a treatment time of >60s. We developed beam line settings for reverse energy sequence and removed the full ramping between scans. This dynamic beam delivery leads to non-negligible beam position errors of >1.5mm which we compensate by field specific corrections. Using a patient file we proved that our novel re-scanning concept doubles the treatment efficiency. Using in-house developed measurement equipment we obtained a precision of <0.5mm in position and <1mm in range which fulfills all clinical requirements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML061 Hadron Therapy Machine Simulations Using BDSIM 546
 
  • W. Shields
    JAI, Egham, Surrey, United Kingdom
  • S.T. Boogert, L.J. Nevay
    Royal Holloway, University of London, Surrey, United Kingdom
  • J. Snuverink
    PSI, Villigen PSI, Switzerland
 
  Minimising the background radiation dose in hadron therapy from particle losses and secondary emissions is of the highest importance for patient protection. To achieve this, tracking particles from source to the patient delivery region in a single simulation provides a quantitative description that distinguishes the background radiation from the treatment dose arriving at the gantry's isocentre. We demonstrate the ability to simulate beam transport, particle loss studies, and background radiation tracking in an example hadron therapy machine using BDSIM, a Geant4 based Monte Carlo simulation code for tracking high energy particles within a particle accelerator and its surrounding environment. Machine optics verification is also demonstrated through comparison to existing accelerator tracking codes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML062 Accelerator Neutron Source for Boron Neutron Capture Therapy 550
 
  • S.Yu. Taskaev, D.A. Kasatov, A.N. Makarov, Y.M. Ostreinov, I.M. Shchudlo, I.N. Sorokin
    BINP SB RAS, Novosibirsk, Russia
  • T.A. Bykov
    Budker INP & NSU, Novosibirsk, Russia
  • Ya.A. Kolesnikov, A.M. Koshkarev, E.O. Sokolova
    NSU, Novosibirsk, Russia
 
  Funding: This study was carried out with a grant from the Russian Science Foundation (project No. 14-32-00006-P) with the support of the Budker Institute of Nuclear Physics and Novosibirsk State University.
A source of epithermal neutrons based on a vacuum-insulated tandem accelerator and a lithium target is developed for the technique of boron neutron capture therapy. A stationary proton beam of 2 MeV with a current of up to 5 mA was obtained in the accelerator. Neutron generation was performed and the flux and neutron spectrum were experimentally measured. A Beam Shaping Assembly was developed and manufactured, which makes it possible to form a therapeutic beam of neutrons to the greatest extent satisfying the requirements of BNCT. It was established that neutron irradiation of tumor cells of human glioma U251 and human glioblastoma T98G, previously incubated in a medium with boron, led to a significant suppression of their viability. Irradiation of mice with grafted human glioblastoma tumor led to their complete cure. In order to increase the beam parameters, the facility was equipped with a wire scanner OWS-30 (D-Pace, Canada; under the license of TRIUMF), a non-contact current sensor NPTC (Bergos, France), a FLIR T650SC infrared camera, an Optris CT Laser 3ML SF pyrometer (Optris, GmbH, Germany), cooled diaphragms with thermistors, telescopic beam receivers with thermoresistors, a new bushing insulator. Two new sources of negative hydrogen ions with a high current are being prepared, one of them is surface-plasma, the other is voluminous. The investigations established the effect of space charge and spherical aberration of lens on the ion beam transport, the dependence of the heating of the diaphragms of the electrodes and the size of the proton beam on the current of the injected beam of negative hydrogen ions and the pressure of the residual gas in the transport channel. The report describes the modernization of the accelerator, discusses the results of research, declares plans.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML063 In Situ Observations of Blistering of a Metal Irradiated with 2 MeV Protons 553
 
  • S.Yu. Taskaev, D.A. Kasatov, A.N. Makarov, I.M. Shchudlo
    BINP SB RAS, Novosibirsk, Russia
  • A. Badrutdinov, Y. Higashi, T. Miyazawa
    OIST, Onna-son, Okinawa, Japan
  • T.A. Bykov
    Budker INP & NSU, Novosibirsk, Russia
  • S.A. Gromilov
    Nikolaev IIC, Novosibirsk, Russia
  • Ya.A. Kolesnikov, A.M. Koshkarev, E.O. Sokolova
    NSU, Novosibirsk, Russia
  • H. Sugawara
    KEK, Ibaraki, Japan
 
  Funding: This study was carried out with a grant from the Russian Science Foundation (project No. 14-32-00006-P) with the support of the Budker Institute of Nuclear Physics and Novosibirsk State University.
A vacuum-insulated tandem accelerator was used to observe in situ blistering during 2-MeV proton irradiation of metallic samples to a fluence of up to 6.7 1020 cm2. Samples consisting of copper of different purity, tantalum, and tantalum-copper compounds were placed on the proton beam path and forced to cool. The surface state of the samples was observed using a CCD camera with a remote microscope. Thermistors, a pyrometer, and an infrared camera were applied to measure the temperature of the samples during irradiation. After irradiation, the samples were analyzed on an X-ray diffractometer, laser and electron microscopes. The present study describes the experiment, presents the results obtained and notes their relevance and significance in the development of a lithium target for an accelerator-based neutron source, for use in boron neutron capture therapy of cancer.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML069 Enhancing Hadron Therapy through OMA 568
 
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie grant agreement No 675265.
Continued research into the optimization of medical accelerators is urgently required to assure the best possible cancer care for patients and this is one of the central aims of the OMA project which received 4 M€ of funding from the European Commission. A consortium of universities, research and clinical facilities, as well as partners from industry carry out an interdisciplinary R&D program across three closely interlinked scientific work packages. These address the development of novel beam imaging and diagnostics systems, studies into treatment optimization including innovative schemes for beam delivery and enhanced biological and physical models in Monte Carlo codes, as well as R&D into clinical facility design and optimization to ensure optimum patient treatment along with maximum efficiency. Selected research highlights from across these work packages will be presented and the impact on hadron therapy facilities around the world discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML070 Thermal and Stress Analysis of an X-Ray Target for 6 MeV Medical Linear Accelerators 572
 
  • Z.H. Wang, H.B. Chen, J. Shi, H. Zha
    TUB, Beijing, People's Republic of China
 
  We present an optimal design of an X-ray target for 6 MeV medical linear accelerators using FLUKA simula-tions. The target is composed of high-atomic number tungsten and high-thermal conductivity copper, corre-sponding water-cooling system is showed too. Further-more, we analyse the temperature and thermal stress re-sponses of the target under transient thermal loads using Ansys Code. For 6 MeV electron beam with 100 uA cur-rent, the results show that the target can achieve 1014 cGy/min at 1meter in front of the target. Within 100 ms, the maximum temperature reaches 512 °C under pulsed heating source with 250 Hz frequency and 1' duty cycle and the number of cycles to failure is estimated as 5.8·108.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML072 Timing Resolution for an Optical Fibre-Based Detector in a 74 MeV Proton Therapy Beam 575
SUSPL094   use link to see paper's listing under its alternate paper code  
 
  • C.A. Penner
    UBC & TRIUMF, Vancouver, British Columbia, Canada
  • C. Duzenli
    UBC, Vancouver, B.C., Canada
  • C.M. Hoehr, C. Lindsay
    TRIUMF, Vancouver, Canada
  • S. O'Keeffe
    University of Limerick, Limerick, Ireland
 
  A Terbium activated Gadolinium Oxysulfide (Gd2O2S:Tb)-filled optical fibre sensor was developed and tested as a proton therapy beam dosimeter on a 74 MeV proton beam. Tests were carried out at the TRIUMF proton therapy centre, where a passively scattered beam is used for treatment. To create a clinically relevant spread-out Bragg peak, a modulator wheel with steps of varying thickness is employed. To determine the sensor's response in a 23 mm spread out Bragg peak, the sensor signal was sampled at depth intervals of 0.79 mm along the beam axis in a water phantom. The resulting data showed a periodic variation in the signal corresponding to the rotation of the modulator wheel and related to the depth in water of the detector. This timing resolution in the sensor response could find application in quality assurance for modulated proton beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZGBF1 Superconducting Gantry for Carbon-Ion Radiotherapy 1232
 
  • Y. Iwata, T. Furukawa, Y. Hara, S. Matsuba, T. Murakami, K. Noda, N. S. Saotome, S. Sato, T. Shirai
    NIRS, Chiba-shi, Japan
  • N. Amemiya
    Kyoto University, Kyoto, Japan
  • H. Arai, T. Fujimoto
    AEC, Chiba, Japan
  • T.F. Fujita, K. Mizushima, Y. Saraya
    National Institute of Radiological Sciences, Chiba, Japan
  • S. Matsuba
    HSRC, Higashi-Hiroshima, Japan
  • T. Obana
    NIFS, Gifu, Japan
  • T. Ogitsu
    KEK, Ibaraki, Japan
  • T. Orikasa, S. Takayama
    Toshiba, Yokohama, Japan
  • R. Tansho
    QST-NIRS, Chiba, Japan
 
  A superconducting magnet gantry has been used at HIMAC in NIRS, transporting beams for carbon ion radiotherapy. A second superconducting gantry, with a different design, is under construction in Yamagata University. This invited talk presents an overview of these gantry designs, their advantages for light ion radiotherapy, their operational experiences, and future perspectives for superconducting radiotherapy gantries.  
slides icon Slides TUZGBF1 [26.683 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUZGBF1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZGBF2
Cyclotron-Based Production of Metallic Radionuclides for Medical Application  
 
  • P. Schaffer, K.R. Buckley, M. Dodd, V. Hanemaayer, B. Hook, J. Kumlin, S. McDiarmid, T..J. Ruth, S.K. Zeisler
    TRIUMF, Vancouver, Canada
  • F. Benard
    BCCA, Vancouver, Canada
  • M. Kovacs
    LHRI, London, Canada
  • J.F. Valliant
    McMaster University, Hamilton, Canada
 
  Funding: Natural Resources Canada Canadian Institutes of Health Research Natural Sciences and Engineering Research Council
Many of the ~1000 hospital-based medical (proton) cyclotrons around the world today operate between 11 and 24 MeV, an ideal energy range for the production of a number of metallic radionuclides that are experiencing a dramatic increase in clinical demand. A Canadian team led by TRIUMF, has developed a solid target hardware configuration with a demonstrated irradiation capability between 2 and 12 kW for up to 6 hours on multiple cyclotron types. Production of Tc-99m, Cu-64 and Ga-68 have been demonstrated, with the team having also established Good Manufacturing Practices (GMP) purification parameters under the operational capabilities of various machines. Plans are in place to expand and enable the production of a number of other metallic radioisotopes as the nuclear medicine community mobilizes to address a number of unmet clinical needs. This presentation will provide a summary of the hardware development effort, isotope production and purification capabilities, as well as the imaging and therapeutic applications that are driving clinical demand for Tc, Ga, Cu and a growing number of metal-based medical isotopes.
 
slides icon Slides TUZGBF2 [4.053 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZGBF3 Betatron Core Slow Extraction at CNAO 1237
 
  • L. Falbo, E. Bressi, S. Foglio, C. Priano
    CNAO Foundation, Milan, Italy
 
  CNAO is the only Italian hadrontherapy facility able to treat tumors with beams of protons and carbon ions. Beam is extracted with a momentum selection scheme in which beam enters the third order resonance driven by a betatron core. When irradiating a tumor, it is thought as divided in the longitudinal plane in several slices while each slice is divided in the transverse plane in several spots called voxels. Considering the dose uniformity that can be obtained during extraction, the machine must extract an average intensity related to the voxel that requires less dose. Therefore during a treatment, for some slices, a technique is needed to lower the extracted beam intensity with respect to the nominal one. A way to guarantee the correct average intensity according to the treatment planning requirements, is to introduce a mechanical filter (a degrader) that reduces the intensity of the accelerated particles. However this method used in the first treatments at CNAO showed some disadvantages and it has been replaced by what has been called the "dynamic betatron" method. The paper shows the implementations and the advantages of this method in the CNAO treatments.  
slides icon Slides TUZGBF3 [2.151 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUZGBF3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZGBF4 The South African Isotope Facility 1240
 
  • J.L. Conradie, L.S. Anthony, F. Azaiez, S. Baard, R.A. Bark, A.H. Barnard, P. Beukes, J.I. Broodryk, J.C. Cornell, J.G. De Villiers, H. Du Plessis, W. Duckitt, D.T. Fourie, P.G. Gardiner, M.E. Hogan, I.H. Kohler, J.J. Lawrie, C. Lussi, N.R. Mantengu, R.H. McAlister, J. Mira, K.V. Mjali, H.W. Mostert, C. Naidoo, F. Nemulodi, M. Sakildien, V.F. Spannenberg, G.F. Steyn, N. Stodart, R.W. Thomae, M.J. Van Niekerk, P.A. van Schalkwyk
    iThemba LABS, Somerset West, South Africa
 
  iThemba LABS has developed a strategy to respond to the need to expand the research agenda of the facility, as well as to seize the opportunity to exploit the growing global demand for radioisotopes. This strategy will depend on the existing accelerator and isotope production infrastructure, as well as the acquisition of a cyclotron capable of accelerating protons to 70 MeV at beam currents in excess of 700 microampere. This development will be approached in two phases: Phase 1 will include the migration of the existing radioisotope production from the separated-sector cyclotron (SSC) to a new 70 MeV cyclotron. This rearrangement will increase the isotope production capability and also free up the SSC for research. In phase 2, beams of artificial isotopes will be produced at energies up to 5 MeV/nucleon to allow iThemba LABS to expand its research capabilities to new frontiers. The various different aspects of the proposed project will be discussed.  
slides icon Slides TUZGBF4 [23.494 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUZGBF4  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)