08 Applications of Accelerators, Tech Transfer and Industrial Relations
U03 Transmutation and Energy Production
Paper Title Page
MOPML017 Status and Development of the MYRRHA Injector 432
 
  • D. Mäder, H. Höltermann, D. Koser, B. Koubek, K. Kümpel, P. Müller, U. Ratzinger, M. Schwarz, W. Schweizer
    BEVATECH, Frankfurt, Germany
  • C. Angulo, J. Belmans, D. Davin, W. De Cock, P. Della Faille, F. Doucet, A. Gatera, Pompon, F.F. Pompon, D. Vandeplassche
    Studiecentrum voor Kernenergie - Centre d'Étude de l'énergie Nucléaire (SCK•CEN), Mol, Belgium
  • M. Busch, H. Hähnel, H. Podlech
    IAP, Frankfurt am Main, Germany
 
  The MYRRHA project aims at coupling a cw 600 MeV, 4 mA proton linac with a sub-critical reactor as the very first prototype nuclear reactor to be driven by a particle accelerator (ADS). Among several applications, MYRRHA main objective is to demonstrate the principle of partitioning and transmutation (P&T) as a viable solution to drastically reduce the radiotoxicity of long-life nuclear waste. For this purpose, the linac needs an unprecedented level of reliability in terms of allowable beam trips. The normal conducting injector delivers 16.6 MeV protons to the superconducting main linac. The first section of the injector (up to 5.9 MeV) consists of an ECR source, a 4-Rod-RFQ and a rebunching line followed by 7 individual CH-type cavities. This entire section will be set up and operated by SCK·CEN in Louvain-la-Neuve, Belgium, for ample performance and reliability testing. The first CH cavity has been sent for power tests to IAP Frankfurt, Germany. The most recent status of all cavities, couplers and the beam diagnostics of the MYRRHA injector is presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML053 Mu*STAR Accelerator-Driven Subcritical Reactors Burning Spent Nuclear Fuel at Light-Water-Reactor Sites 524
 
  • R.P. Johnson, R.J. Abrams, M.A. Cummings, T.J. Roberts
    Muons, Inc, Illinois, USA
 
  This project will use modeling and simulation tools to optimize many aspects of the Mu*STAR design and begin to explore accident scenarios. At present we have a conceptual design of the accelerator, the reactor, the spallation target, and the fractional distillation to separate volatile fission products. Our GAIN project with ORNL is preparing a design of the Fuel Processing Plant that will convert spent nuclear fuel into the molten-salt fuel for Mu*STAR. This includes all of the nuclear components, but not such things as the turbine and generator, physical plant, control and monitoring systems, etc. We currently have basic simulations of the reactor neutronics, and a start at calculating the fuel evolution. These have used MCNP and ORIGEN, and initial results have been reported1. This project will support the use of additional neutronics and multi-physics codes, enabling a much more thorough analysis of the system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML056 Evidence of the Electron-Screened Oppenheimer Philips Reactions 162Er(d, n)163Tm or 162Er(p,γ)163Tm in Deuterated Materials Subjected to a Low-Energy Photon Beam 533
 
  • T.L. Benyo, A. Chait, L.P. Forsley, M. Pines, V. Pines, B.M. Steinetz
    NASA Glenn Research Center, Cleveland, USA
 
  NASA GRC has investigated electron-screening of deuterated metals using MV electron linear accelerators (LINACs). GRC found that repeatable sub-threshold nuclear reactions may have occurred resulting in nuclear products observed via witness-material neutron activation using high purity germanium (HPGe) gamma spectroscopy and liquid scintillator spectroscopy. The suspected path of creation may be the result of electron-screened Oppenheimer-Phillips reactions or Mirror Oppenheimer-Phillips reactions. Evidence of 162Er(d, n)163Tm or 162Er(p,γ)163Tm has been shown with the appearance of gamma peaks coinciding with 163Tm with a published ' life of 22 minutes from samples containing deuterated erbium exposed to a photon beam. Both of these reactions are a variation of the Oppenheimer-Phillips nuclear reaction. Evidence of the reactions have been detected by an HPGe gamma detection system and witnessed within gamma spectra collected from deuterated materials subjected to a nominally 1.95 MeV photon beam. This paper describes the theory behind the proposed reactions, the experiments conducted at GRC, and the experimental evidence of the suspected creation of the 163Tm isotope.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML060 Self-Consistent Simulation and Optimization of Space-Charge Limited Thermionic Energy Converters 543
 
  • N.M. Cook, J.P. Edelen, C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
  • J.-L. Vay
    LBNL, Berkeley, California, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC0017162.
Thermionic energy converters (TEC) are an attractive technology for modular, efficient transfer of heat to electrical energy. The steady-state dynamics of a TEC are a function of the emission characteristics of the cathode and anode, an array of intra-gap electrodes and dielectric structures, and the self-consistent dynamics of the electrons in the gap. Proper modeling of these devices requires self-consistent simulation of the electron interactions in the gap. We present results from simulations of these devices using the particle-in-cell code Warp, developed at Lawrence Berkeley National Lab. We consider the role of individual energy loss mechanisms in reducing device efficiency, including kinetic losses, radiative losses, and dielectric charging. We discuss the implementation of an external circuit model to provide realistic feedback. Lastly, we illustrate the potential to use nonlinear optimization to maximize the efficiency of these devices by examining grid transparency.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)