Keyword: cryomodule
Paper Title Other Keywords Page
MOYGB2 The LCLS-II: A High Power Upgrade to the LCLS cavity, linac, undulator, electron 18
 
  • J.N. Galayda
    SLAC, Menlo Park, California, USA
 
  Funding: The work is supported by DOE under grant No. DE-AC02-76SF00515
The LCLS-II is an upgrade of the LCLS X-ray FEL based on a 4 GeV superconducting RF linac. The LCLS-II is designed to produce 100's of Watts of X-rays from 200 eV up to 5 keV. The linac uses 1.3 GHz 9-cell cavities processed using the N2-doping technique and will be the first large scale CW SCRF linac with a Q of roughly 3x1010 at a gradient of 16 MV/m. The injector which will be commissioned in spring 2018, is based on the normal conducting CW RF APEX gun developed at LBNL. The LCLS-II will have two undulators: the soft X-ray undulator is a 39 mm period hybrid PM with an adjustable vertical gap to cover the range from 200 eV to 1.5 keV and hard X-ray undulator is a novel adjustable horizontal gap hybrid PM undulator with 26 mm period to generate vertically polarized X-rays from 1 to 5 keV. The talk will review the performance goals as well as the hardware fabrication.
 
slides icon Slides MOYGB2 [11.372 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOYGB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZGBD3 Performance of the First LCLS-II Cryomodules: Issues and Solutions cavity, HOM, radiation, operation 34
 
  • N. Solyak, E. Cullerton, J. Einstein-Curtis, E.R. Harms, B.D. Hartsell, J.P. Holzbauer, T.N. Khabiboulline, A. Lunin, Y.M. Pischalnikov, R.P. Stanek, G. Wu
    Fermilab, Batavia, Illinois, USA
  • O. Napoly
    CEA/DSM/IRFU, France
 
  LCLS-II 4 GeV linac is on the middle production stage. Linac contains 40 cryomodules of 1.3 GHz and 3 cryomodules of 3.9 GHz, including spares. Fermilab and JLAB share responsibility for cryomodule design, assembly and test. Paper will overview the performance of the cryomodules it the tests, lessons learned and modifications in design to improve performance.  
slides icon Slides MOZGBD3 [8.634 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBD3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZGBF4 Evolution of the Superconducting Linac Output Energy at the Spallation Neutron Source cavity, operation, linac, SRF 73
 
  • S.-H. Kim, D.E. Anderson, M.T. Crofford, M. Doleans, J. Galambos, S.W. Gold, M.P. Howell, M.A. Plum, D.J. Vandygriff
    ORNL, Oak Ridge, Tennessee, USA
  • R. Afanador, D.L. Barnhart, B. DeGraff, J.D. Mammosser, C.J. McMahan, T.S. Neustadt, C.C. Peters, J. Saunders, D.M. Vandygriff
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
The SNS linac output energy has increased since the start of neutron production in FY2007. The various improvements that contributed to the increase of the linac output energy are LLRF/control system improvement, high voltage converter modulator system improvement, high-power RF system improvement, cryomodule repairs, spare cryomodule development and accelerating gradient improvement through in-situ plasma processing. In this paper, the history of the SNS SCL output energy is reported, and plans for the near-term future and for the Proton Power Upgrade (PPU) project are also presented.
 
slides icon Slides MOZGBF4 [34.189 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBF4  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYGBE2 CBETA, the 4-Turn ERL with SRF and Single Return Loop electron, linac, gun, SRF 635
 
  • G.H. Hoffstaetter, N. Banerjee, J. Barley, A.C. Bartnik, I.V. Bazarov, D.C. Burke, J.A. Crittenden, L. Cultrera, J. Dobbins, S.J. Full, F. Furuta, R.E. Gallagher, M. Ge, C.M. Gulliford, B.K. Heltsley, R.P.K. Kaplan, V.O. Kostroun, Y. Li, M. Liepe, W. Lou, C.E. Mayes, J.R. Patterson, P. Quigley, D.M. Sabol, D. Sagan, J. Sears, C.H. Shore, E.N. Smith, K.W. Smolenski, V. Veshcherevich, D. Widger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg, S.J. Brooks, C. Liu, G.J. Mahler, F. Méot, R.J. Michnoff, M.G. Minty, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, H. Witte
    BNL, Upton, Long Island, New York, USA
  • D. Douglas
    JLab, Newport News, Virginia, USA
  • J.K. Jones
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • D. Jusic
    Cornell University, Ithaca, New York, USA
  • D.J. Kelliher
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • B.C. Kuske, M. McAteer, J. Völker
    HZB, Berlin, Germany
 
  Funding: Supported by NSF award DMR-0807731, DOE grant DE-AC02-76SF00515, and NYSERDA.
A collaboration between Cornell University and Brookhaven National Laboratory has designed and is constructing CBETA, the Cornell-BNL ERL Test Accelerator on the Cornell campus. The ERL technology that has been prototyped at Cornell for many years is being used for this new accelerator, including a DC electron source and an SRF injector Linac with world-record current and normalized brightness in a bunch train, a high-current linac cryomodule optimized for ERLs, a high-power beam stop, and several diagnostics tools for high-current and high-brightness beams. BNL has designed multi-turn ERLs for several purpose, dominantly for the electron beam of eRHIC, its Electron Ion Collider (EIC) project and for the associated fast electron cooling system. Also in JLEIC, the EIC designed at JLAB, an ERL is envisioned to be used for electron cooling. The number of transport lines in an ERL is minimized by using return arcs that are comprised of a Fixed Field Alternating-gradient (FFA) design. This technique will be tested in CBETA, which has a single return for the 4-beam energies with strongly-focusing permanent magnets of Halbach type. The high-brightness beam with 150~MeV and up to 40~mA will have applications beyond accelerator research, in industry, in nuclear physics, and in X-ray science. Low current electron beam has already been sent through the most relevant parts of CBETA, from the DC gun through both cryomodules, through one of the 8 similar separator lines, and through one of the 27 similar FFA structures. Further construction is envisioned to lead to a commissioning start for the full system early in 2019.
 
slides icon Slides TUYGBE2 [17.348 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBE2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF001 Requirements for the Cryogenic Refrigerator and the He Distribution System for the MYRRHA 100 Mev Accelerator linac, cryogenics, cavity, operation 655
 
  • T. Junquera
    Accelerators and Cryogenic Systems, Orsay, France
  • C. Angulo
    Studiecentrum voor Kernenergie - Centre d'Étude de l'énergie Nucléaire (SCK•CEN), Mol, Belgium
  • D. Vandeplassche
    SCK•CEN, Mol, Belgium
 
  MYRRHA is an ADS demonstrator for the long-lived radioactive waste transmutation. It is composed of a High Energy CW Linac Accelerator (600 MeV - 4mA) coupled to a Subcritical Reactor of 100 MW thermal power. The main challenge of the Linac is a very high reliability performance to limit stress and long restart procedures of the reactor. Within the MYRRHA project phased approach for the construction, a 100 MeV-4 mA Linac (Injector up to 17 MeV and SC Linac between 17 MeV and 100 MeV) will be constructed in the Phase 1, covering 2016-2024. The SC Linac is composed of 58 Single-Spoke SC cavities, housed in 29 cryomodules. The cavities operates at 352 MHz, in a superfluid Helium bath at 2K. In this paper, the requirements for the Linac Cryogenic System are presented. The analysis of high thermal loads induced by the CW mode operation of cavities, leads to a Cryogenic Refrigerator with a power of 2700 W (equiv. power capacity at 4.5 K). Each cryomodule is connected through a dedicated Valve Box to the Helium transfer line running along the Linac tunnel. A description of the cryogenic system features and initial models of the tunnel and associated buildings are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF003 Integrated Prototyping in View of the 100 MeV Linac for Myrrha Phase 1 linac, cavity, controls, target 661
 
  • D. Vandeplassche, J. Belmans
    SCK•CEN, Mol, Belgium
  • C. Angulo, D. Davin, W. De Cock, P. Della Faille, F. Doucet, A. Gatera, Pompon, F.F. Pompon
    Studiecentrum voor Kernenergie - Centre d'Étude de l'énergie Nucléaire (SCK•CEN), Mol, Belgium
  • D. Bondoux, F. Bouly
    LPSC, Grenoble Cedex, France
  • H. Höltermann, D. Mäder
    BEVATECH, Frankfurt, Germany
  • C. Joly, G. Olry, H. Saugnac
    IPN, Orsay, France
  • M. Loiselet, N. Postiau, L. Standaert
    UCL, Louvain-la-Neuve, Belgium
  • H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Funding: Work partially supported by the European Commission H2020 programme MYRTE #662186
The MYRRHA project borne by SCK•CEN, the Belgian Nuclear Research Centre, aims at realizing a pre-industrial Accelerator Driven System (ADS) for exploring the transmutation of long lived nuclear waste. The linac for this ADS will be a High Power Proton Accelerator delivering 2.4 MW CW beam at 600 MeV. It has to satisfy stringent requirements for reliability and availability: a beam-MTBF of 250h is targeted. The reliability goal is pursued through a phased approach. During Phase 1, expected till 2024, the MYRRHA linac up to 100 MeV will be constructed. It will allow to evaluate the reliability potential of the 600 MeV linac. It will also feed a Proton Target Facility in which radioisotopes of interest will be collected through an ISOL system. This contribution will focus on the transition to integrated prototyping, which will emphasize (i) a test platform consisting of the initial section of the normal conducting injector (5.9 MeV), (ii) the realization of a complete cryomodule for the superconducting linac and of its cryogenic valve box. The cryomodule will house two 352 MHz single spoke cavities operated at 2K.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF014 Beam Dynamics Studies For the IFMIF-DONES SRF-Linac linac, SRF, cavity, solenoid 687
 
  • L. Du, N. Bazin, N. Chauvin, S. Chel, J. Plouin
    CEA/IRFU, Gif-sur-Yvette, France
 
  The DONES (DEMO oriented neutron source) project is aimed at constructing a DEMO of IFMIF to provide sufficient material damage [1]. In the SRF-Linac of this project, losses can cause harmful material activation and must be maintained much less than 1W/m. It's a challenge to keep losses at such a low level with high beam power and high space charge. This paper presents two designs of the DONES SRF-Linac, one with 4 cryomodules and another with 5 cryomodules. The design details to reduce the losses and the multi-particle simulation results will be shown. The errors studies for these results will also be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF015 Preliminary Test Results of the First ESS Elliptical Cryomodule Demonstrator cavity, cryogenics, vacuum, radiation 691
 
  • F. Peauger, C. Arcambal, S. Berry, P. Bosland, E. Cenni, G. Devanz, T. Hamelin, O. Piquet, B. Renard, P. Sahuquet, T. Trublet
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • C. Darve
    ESS, Lund, Sweden
  • P. Michelato
    INFN/LASA, Segrate (MI), Italy
  • G. Olivier
    IPN, Orsay, France
  • J.P. Thermeau
    Laboratoire APC, Paris, France
 
  Two ESS elliptical cavities cryomodule prototypes are being developed and will be tested at CEA Saclay before starting the series production. This paper presents the preliminary test results of the first medium beta cavities cryomodule demonstrator M-ECCTD. The measurements of the cryogenic performances at 80 K and 2 K of the different cryomodule components and circuits are given. The first RF test results performed at low power are also reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF057 The SPS Tests of the HL-LHC Crab Cavities cavity, vacuum, HOM, operation 846
 
  • R. Calaga, O. Capatina, G. Vandoni
    CERN, Geneva, Switzerland
 
  Funding: Research supported by the HL-LHC project
Two superconducting crab cavities in the framework of the High Luminosity (HL-LHC) LHC were built to test for the first time with proton beams in the Super Proton Synchrotron (SPS) at CERN. These tests will address the operation of the crab cavities in a high current and high intensity proton machine through the full energy cycle with a primary focus on cavity transparency, performance and stability, failures modes and long term effects on proton beams. An overview of the SPS cryomodule development towards the SPS tests along with the first test results are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF076 Design of PIP-II Medium Energy Beam Transport vacuum, SRF, linac, kicker 905
 
  • A. Saini, C.M. Baffes, A.Z. Chen, V.A. Lebedev, L.R. Prost, A.V. Shemyakin
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics
The Proton Improvement Plan-II (PIP-II) is a proposed upgrade for the accelerator complex at Fermilab. The central piece of PIP-II is a superconducting radio frequency (SRF) 800 MeV linac capable of operating in both CW and pulse regimes. The PIP-II linac comprises a warm front-end that includes a H ion source capable of delivering 15-mA, 30-keV DC or pulsed beam, a Low Energy Beam Transport (LEBT), a 162.5 MHz, CW Radio-Frequency Quadrupole (RFQ) accelerating the ions to 2.1 MeV and, a 14-m Medium Energy Beam Transport (MEBT) before beam is injected into SRF part of the linac. This paper presents the PIP-II MEBT design and, discusses operational features and considerations that lead to existing optics design such as bunch by bunch chopping system, minimization of radiation coming to the warm front-end from the SRF linac using a concrete wall, a robust vacuum protection system etc.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK003 Beam Dynamics Simulations for the New Superconducting CW Heavy Ion LINAC at GSI cavity, linac, heavy-ion, solenoid 959
 
  • M. Schwarz, M. Basten, M. Busch, H. Podlech
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, M. Heilmann, A. Rubin, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  Funding: Work supported by BMBF Contr. No. 05P15RFBA and EU Framework Programme H2020 662186 (MYRTE)
For future experiments with heavy ions near the coulomb barrier within the super-heavy element (SHE) research project a multi-stage R&D program of GSI/HIM and IAP is currently in progress. It aims for developing a supercon-ducting (sc) continuous wave (CW) LINAC with multiple CH cavities as key components downstream the High Charge State Injector (HLI) at GSI. The LINAC design is challenging due to the requirement of intense beams in CW mode up to a mass-to-charge ratio of 6, while covering a broad output energy range from 3.5 to 7.3 MeV/u with unchanged minimum energy spread. Testing of the first CH-cavity in 2016 demonstrated a promising maximum accelerating gradient of Ea = 9.6 MV/m; the worldwide first beam test with this sc multi-gap CH-cavity in 2017 was a milestone in the R&D work of GSI/HIM and IAP. In the light of experience gained in this research so far, the beam dynamics layout for the entire LINAC has recently been updated and optimized.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK015 The SARAF-LINAC Project 2018 Status linac, cavity, status, controls 994
 
  • N. Pichoff, D. Chirpaz-Cerbat, R. Cubizolles, J. Dumas, R.D. Duperrier, G. Ferrand, B. Gastineau, P. Gastinel, F. Gougnaud, M. Jacquemet, C. Madec, Th. Plaisant, F. Senée, A. Sutra-Fourcade, D. Uriot
    IRFU, CEA, University Paris-Saclay, Gif-sur-Yvette, France
  • D. Berkovits, J. Luner, A. Perry, E. Reinfeld, J. Rodnizki
    Soreq NRC, Yavne, Israel
  • M. Di Giacomo
    GANIL, Caen, France
 
  SNRC and CEA collaborate to the upgrade of the SARAF accelerator to 5 mA CW 40 MeV deuteron and proton beams (Phase 2). CEA is in charge of the design, construction and commissioning of the MEBT line and the superconducting linac (SARAF-LINAC Project). The prototypes of the 176 MHz NC rebuncher, SC cavities, RF coupler and SC Solenoid-Package are under construction and their test stands construction or adaptation is in progress at Saclay. Meanwhile, the cryomodules and the global system just passed their Critical Design Reviews. This paper presents the status of the SARAF-LINAC Project at April 2018.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL037 Installation Progress on FRIB β=0.041 Cryomodules Toward Beam Commissioning MMI, diagnostics, linac, cryogenics 1087
 
  • H. Ao, B. Bird, N.K. Bultman, F. Casagrande, C. Compton, K.D. Davidson, K. Elliott, V. Ganni, A. Ganshyn, P.E. Gibson, I. Grender, W. Hartung, L. Hodges, K. Holland, A. Hussain, M. Ikegami, S. Jones, P. Knudsen, S.M. Lidia, I.M. Malloch, E.S. Metzgar, S.J. Miller, D.G. Morris, P.N. Ostroumov, J.T. Popielarski, L. Popielarski, M.A. Reaume, T. Russo, K. Saito, M. Shuptar, S. Stanley, S. Stark, D.R. Victory, J. Wei, J.D. Wenstrom, M. Xu, T. Xu, Y. Xu, Y. Yamazaki, Q. Zhao, S. Zhao
    FRIB, East Lansing, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
  • M. Wiseman
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB) driver linac is to accelerate all the stable ion beams from proton to uranium beyond 200 MeV/u with beam powers up to 400 kW, which will be the first large-scale, CW SRF ion linac. The beam commissioning of the front end (from the ion source to the RFQ) already began and is in progress. The Accelerator Readiness Review (ARR) for beam through the first three β=0.041 cryomodules is scheduled for May 2018. The next step is the beam commissioning through the 12 SRF cavities housed in these 3 cryomodules with 6 superconducting solenoid magnets. The cryomodules and the adjacent warm diagnostics boxes in between have been already installed and aligned in the tunnel. This paper describes the installation progress of the β=0.041 cryomodules and plans for ARR02.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYGBD1 12 GeV CEBAF Initial Operational Experience and Challenges operation, MMI, experiment, cavity 1771
 
  • M. F. Spata
    JLab, Newport News, Virginia, USA
 
  The 12 GeV Upgrade for the Continuous Electron Beam Accelerator Facility (CEBAF) achieved CD-4B, or Project Completion, on September 27, 2017. The 13-year $338M project doubled the beam energy of the CEBAF accelerator while also adding a fourth experimental hall. The scope of work for the accelerator complex was completed in 2014. Over the subsequent three years the upgrades for the experimental halls were completed, beamlines and spectrometers commissioned and transitions made to production running for the Nuclear Physics program. This paper will present an overview of the operational experience gained during initial accelerator commissioning through the recent achievements of simultaneous 4-Hall operations at full beam power.  
slides icon Slides WEYGBD1 [15.183 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEYGBD1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF038 Microphonics Suppression in the CBETA Linac Cryomodules cavity, linac, SRF, controls 2447
 
  • N. Banerjee, J. Dobbins, F. Furuta, G.H. Hoffstaetter, R.P.K. Kaplan, M. Liepe, P. Quigley, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was performed through the support of New York State Energy Research and Development Agency. The linac cryomodules were constructed with funding from the National Science Foundation.
The Cornell-BNL ERL Test Accelerator (CBETA) is a new multi-turn energy recovery linac currently under construction at Cornell University. It uses two superconducting linacs, both of which are susceptible to microphonics detuning. The high-current injector accelerates electrons to 6 MeV and the main linac accelerates and decelerates electrons by 36 MeV. In this paper, we discuss various measures taken to reduce vibrations caused by instabilities and flow transients in the cryogenic system of the main linac cryomodule. We further describe the use of a Least Mean Square algorithm in establishing a stable Active Microphonics Compensation system for operation of the main linac cavities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF043 Frequency Tuner Development at Cornell for the RAON Half Wave Resonators cavity, cryogenics, controls, operation 2461
 
  • M. Ge, F. Furuta, T. Gruber, S.W. Hartman, M. Liepe, J.T. Maniscalco, T.I. O'Connell, P.J. Pamel, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • B.H. Choi, J. Joo, J.W. Kim, W.K. Kim, J. Lee, I. Shin
    IBS, Daejeon, Republic of Korea
 
  The superconducting half-wave-resonators for the RAON project require a slow frequency tuner that can provide at least 80 kHz tuning range. Cornell University has designed, prototyped, and tested a tuner for these half-wave-resonators. In this paper, we present the tuner design, prototype fabrication, test insert preparation, long-term testing and tuner performance test results at cryogenic temperature. The performance of the tuner is analyzed in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF078 Assembly of the DQW Crab Cavity Cryomodule for SPS Test cavity, vacuum, controls, alignment 2561
 
  • M. Garlaschè, K. Artoos, R. Calaga, O. Capatina, T. Capelli, N. El Kbiri, D. Lombard, P.F. Marcillac, P. Minginette, M. Narduzzi, L.R.A. Renaglia, J. Roch, J.S. Swieszek
    CERN, Geneva, Switzerland
  • A. Krawczyk, B. Prochal
    IFJ-PAN, Kraków, Poland
 
  RF Crab Cavities are an essential part of the High Luminosity Upgrade of the LHC accelerating complex. Two concepts of such superconducting systems are being developed: the Double Quarter Wave (DQW) and the RF Dipole (RFD). A prototype cryomodule - hosting two DQW cavities - has been fabricated and assembled for validation tests to be carried out in the Super Proton Synchrotron (SPS) at CERN. An overview of the main cryomodule components is presented, together with the system features and main fabrication requirements. The preparatory measures for cryomodule assembly, the execution and lessons learned are also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMK010 LCLS-II Cryomodules Production at Fermilab cavity, vacuum, FEL, controls 2652
 
  • T.T. Arkan, J.N. Blowers, C.M. Ginsburg, C.J. Grimm, J.A. Kaluzny, A. Lunin, Y.O. Orlov, K.S. Premo, R.P. Stanek, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  Funding: DOE
LCLS-II is a planned upgrade project for the linear coherent light source (LCLS) at SLAC. The LCLS-II linac will consist of thirty-five 1.3 GHz and two 3.9 GHz superconducting RF continuous wave (CW) cryomodules that Fermilab and Jefferson Lab are currently producing in collaboration with SLAC. The LCLS-II 1.3 GHz cryomodule design is based on the European XFEL pulsed-mode cryomodule design with modifications needed for CW operation. Two prototype cryomodules had been assembled and tested. After prototype cryomodule tests, both laboratories have increased cryomodule production rate to meet the challenging LCLS-II project installation schedule requirements of approximately one cryomodule per month per laboratory. Fermilab is at half point for the production, meaning that 6 cryomodules are fully assembled and tested. This paper presents Fermilab Cryomodule Assembly Facility (CAF) infrastructure for the LCLS-II cryomodules assembly, production experience at the half point emphasizing the challenges and mitigations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMK010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML001 Passive Microphonics Mitigation during LCLS-II Cryomodule Testing at Fermilab cavity, cryogenics, controls, resonance 2668
 
  • J.P. Holzbauer, B.E. Chase, J. Einstein-Curtis, B.J. Hansen, E.R. Harms, J.A. Kaluzny, A.L. Klebaner, M.W. McGee, Y.O. Orlov, T.J. Peterson, Y.M. Pischalnikov, W. Schappert, R.P. Stanek, J. Theilacker, M.J. White, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The LCLS-II project calls for cryomodule production and testing at both Fermilab and JLab. Due to low beam loading and high cavity quality factor, the designed peak detuning specification is 10 Hz. Initial testing showed peak detuning up to 150 Hz with a complex and varying time-structure, showing both fast (1-2 second) and slow (1-2 hour) drifts in amplitude and spectrum. Extensive warm and cold testing showed Thermoacoustic Oscillations in the cryogenic valves were the primary source of the microphonics. This was mitigated by valve wipers and valve re-plumbing, resulting in a greatly improved cavity detuning environment. Additional modifications were made to the cavity mechanical supports and Fermilab test stand to improve detuning performance. These modifications and testing results will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML004 Production Tuner Testing for LCLS-II Cryomodule Production cavity, LLRF, interface, SRF 2678
 
  • J.P. Holzbauer, Y.M. Pischalnikov, W. Schappert, J.C. Yun
    Fermilab, Batavia, Illinois, USA
  • C. Contreras-Martinez
    FRIB, East Lansing, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
LCLS-II 1.3 GHz cryomodule production is well underway at Fermilab. Several dozen cavity/tuner systems have been tested, including tuning to 1.3 GHz, cold landing frequency, range/sensitivity of the slow tuner, and range/sensitivity of the fast tuner. All this testing information as well as lessons learned from tuner installation will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML005 Testing of SSR1 Production Tuner for PIP-II cavity, linac, SRF, niobium 2681
 
  • J.P. Holzbauer, D. Passarelli, Y.M. Pischalnikov
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The PIP-II project at Fermilab is a proton driver linac calling for the use of five different, novel cavity geometries. Prototyping at Fermilab is in the advanced stages for the low-beta single-spoke resonator (SSR1) and associated technologies. A production tuner design has been fabricated and tested, both warm and cold in the Spoke Test Cryostat (STC). This paper will present the detailed studies on this tuner, including slow motor/piezoelectric tuner range and hysteresis as well as dynamic mechanical system characterization.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML006 Modified Slow Tuner Design for Cavity 1 Inside LCLS II Cryomodules cavity, interface, SRF, simulation 2684
 
  • Y.M. Pischalnikov, T.T. Arkan, S. Cheban, J.P. Holzbauer, J.A. Kaluzny, Y.O. Orlov, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Initial LCLS-II cryomodule testing at Fermilab showed microphonics on the furthest upstream cavity (number 1) at least factor 2 larger than on the rest of the cavities. Testing indicated that this was a difference in the mechanical support of cavity 1, not a local acoustic source. Further investigation pointed to the upstream beam-pipe of the cavity 1. The upstream cavity flange has a solid spool piece connection to the beamline gate valve unlike the other cavities, which all connect through bellows. The gate valve's weight is supported by sliding system (free in z-axis) connected to large diameter Helium gas return pipe. The tuner design was modified to transform interface between cavity#1 and gate valve. Arms of the tuner for cavity 1 were extended and became the support structure for gate valve, eliminating the connection to the helium return pipe. Modification of the tuner design and results in microphonics mitigations will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML007 Active Microphonics Compensation for LCLS-II cavity, controls, resonance, LLRF 2687
 
  • J.P. Holzbauer, B.E. Chase, J. Einstein-Curtis, Y.M. Pischalnikov, W. Schappert
    Fermilab, Batavia, Illinois, USA
  • L.R. Doolittle, C. Serrano
    LBNL, Berkeley, California, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Testing of early LCLS-II cryomodules showed microphonics-induced detuning levels well above specification. As part of a risk-mitigation effort, a collaboration was formed between SLAC, LBNL, and Fermilab to develop and implement active microphonics compensation into the LCLS-II LLRF system. Compensation was first demonstrated using a Fermilab FPGA-based development system compensating on single cavities, then with the LCLS-II LLRF system on single and multiple cavities simultaneously. The primary technique used for this effort is a bank of narrowband filter set using the piezo-to-detuning transfer function. Compensation automation, optimization, and stability studies were done. Details of the techniques used, firmware/software implementation, and results of these studies will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML009 Superconducting Magnet Performance in LCLS-II Cryomodules quadrupole, superconducting-magnet, operation, dipole 2693
 
  • V.S. Kashikhin, S. Cheban, J. DiMarco, E.R. Harms, A.V. Makarov, T. Strauss, M.A. Tartaglia
    Fermilab, Batavia, Illinois, USA
 
  Abstract' New LCLS-II Linear Superconducting Accelerator Cryomodules under construction at Fermilab. Inside each SCRF Cryomodule installed superconducting magnet package to focus and steer an electron beam. The magnet package has the iron dominated configuration with racetrack type quadrupole and dipole conductively cooled coils. For easier installation the magnet could be split in the vertical plane. Initially the magnet was tested in a liquid helium bath, and were performed high precision magnetic field measurements. Several Cryomodules with magnets inside were built and successfully tested at Fermilab test facility. In the paper presented Cryomodule magnet packages test results, discussed the magnet, and current leads conduction cooling performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML014 Tooling Systems for the Assembly and Integration of the SSR1 Cryomodule for PIP-II Project at Fermilab cavity, solenoid, vacuum, insertion 2710
 
  • D. Passarelli, F. Di Ciocchis, M. Parise, V. Roger
    Fermilab, Batavia, Illinois, USA
 
  In this paper we present the assembly strategy and tooling design for the SSR1 cryomodule from the cavity string to the final module. Several challenging aspects were considered to minimize undesired stresses on critical components, to preserve the alignment of cavities and solenoids during final assembly, and ultimately to meet the technical requirements of the PIP-II project at Fermilab.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML015 Preparation and Qualification of Jacketed SSR1 Cavities for String Assembly at Fermilab cavity, vacuum, multipactoring, controls 2714
 
  • D. Passarelli, P. Berrutti, S.K. Chandrasekaran, J.P. Ozelis, M. Parise, L. Ristori, A.M. Rowe, A.I. Sukhanov
    Fermilab, Batavia, Illinois, USA
 
  The qualification of dressed 325 MHz Single Spoke Resonators type 1 (SSR1) to meet technical requirements is an important milestone in the development of the SSR1 cryomodule for the PIP-II Project at Fermilab. This paper reports the procedures and lessons learned in processing and preparing these cavities for horizontal cold testing prior to integration into a cavity string assembly.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML019 Design Update of the SSR1 Cryomodule for PIP-II Project cryogenics, HOM, solenoid, interface 2721
 
  • V. Roger, S. Cheban, T.H. Nicol, Y.O. Orlov, D. Passarelli, P. Vecchiolla
    Fermilab, Batavia, Illinois, USA
 
  This paper reports the design update of the Single Spoke Resonator 1 (SSR1) cryomodule developed in the framework of PIP-II project at Fermilab. The most re-cent design changes and results of calculations per-formed to optimize the vacuum vessel, current leads, piping system and thermal shield are described. Then the estimated heat loads of the cryomodule leading to the sizing of the cryogenic valves will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML022 3.9 GHz Power Coupler Design and Tests for LCLS-II Project cavity, simulation, resonance, diagnostics 2727
 
  • N. Solyak, I.V. Gonin, C.J. Grimm, E.R. Harms, T.N. Khabiboulline, A. Lunin, O.V. Prokofiev, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  LCLS-II linac requires two 3.9 GHz cryomodules (eight cavities per CM), operating up to 16MV/m in cw regime. Fermilab has designed and built few prototypes of the cavity and auxiliaries and tested them at the vertical and horizontal cryostats. Fundamental power coupler, based on existing design (FLASH, XFEL) was redesign for 2kW average power. We built three prototypes and tested them at room temperature test stand. One coupler was assembled on the cavity and tested at horizontal cryostat as part of design verification program. Test results and comparison with simulations are discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML023 Design and Test Results of the 3.9 GHz Cavity for LCLS-II cavity, radiation, operation, FEL 2730
 
  • N. Solyak, S. Aderhold, S.K. Chandrasekaran, C.J. Grimm, T.N. Khabiboulline, A. Lunin, O.V. Prokofiev, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  The LCLS-II project uses sixteen 3.9 GHz superconduct-ing cavities to linearize energy distribution before the bunch compressor. To meet LCLS-II requirements origi-nal FNAL design used in FLASH and XFEL was signifi-cantly modified to improve performance and provide reliable operation up to 16 MV/m in cw regime [1-3]. Four prototype cavities were built and tested at vertical cryo-stat. After dressing, one cavity was assembled and tested at horizontal cryostat as part of design verification pro-gram. All auxiliaries (magnetic shielding, power and HOM couplers, tuner) were also re-designed and tested with this cavity. In this paper we will discuss cavity and coupler design and test results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML053 Availability of the TiN Coating-Free Ceramic in the STF-type Power Coupler for ILC electron, SRF, vacuum, GUI 2819
 
  • Y. Yamamoto, E. Kako, T. Matsumoto, S. Michizono, A. Yamamoto
    KEK, Ibaraki, Japan
  • M. Irikura, M. Ishibashi, H. Yasutake
    Toshiba Electron Tubes & Devices Co., Ltd (TETD), Tochigi, Japan
  • C. Julie, E. Montesinos
    CERN, Geneva, Switzerland
 
  In the Superconducting RF Test Facility (STF) in KEK, the research and development for the power coupler with the TiN coating-free ceramic has been done from 2014. In 2016, the high power test at the test bench was stopped due to the worse vacuum level by the unusual heating around the RF window with the TiN coating-free ceramic and the coaxial tapered section, which was caused by the enormous emission of the secondary electrons from the ceramic. And, the situation was never also changed by the ultrapure water rinsing for the power couplers several times. However, in 2017, the ultrasonic rinsing was done for the power couplers for the first time by the collaboration between KEK and TETD. After that, the situation was drastically improved, and the secondary electron emission almost disappeared even in the higher RF duty. This shows that the TiN coating-free ceramic is the prospective item for the cost reduction in ILC. In this report, the recent result for the power coupler with the TiN coating-free ceramic will be presented in detailed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYGBE3 RF Controls for High-Q Cavities for the LCLS-II LLRF, controls, cavity, EPICS 2929
 
  • C. Serrano, K.S. Campbell, L.R. Doolittle, G. Huang, A. Ratti
    LBNL, Berkeley, California, USA
  • R. Bachimanchi, C. Hovater
    JLab, Newport News, Virginia, USA
  • A.L. Benwell, M. Boyes, G.W. Brown, D. Cha, G. Dalit, J.A. Diaz Cruz, J. Jones, R.S. Kelly, A. McCollough
    SLAC, Menlo Park, California, USA
  • B.E. Chase, E. Cullerton, J. Einstein-Curtis, J.P. Holzbauer, D.W. Klepec, Y.M. Pischalnikov, W. Schappert
    Fermilab, Batavia, Illinois, USA
  • L.R. Dalesio, M.A. Davidsaver
    Osprey DCS LLC, Ocean City, USA
 
  Funding: This work was supported by the LCLS-II Project and the U.S. Department of Energy, Contract n. DE-AC02-76SF00515.
The SLAC National Accelerator Laboratory is building LCLS-II, a new 4 GeV CW superconducting (SCRF) Linac as a major upgrade of the existing LCLS. The LCLS-II Low-Level Radio Frequency (LLRF) collaboration is a multi-lab effort within the Department of Energy (DOE) accelerator complex. The necessity of high longitudinal beam stability of LCLS-II imposes tight amplitude and phase stability requirements on the LLRF system (up to 0.01% in amplitude and 0.01° in phase RMS). This is the first time such requirements are expected of superconducting cavities operating in continuous-wave (CW) mode. Initial measurements on the Cryomodule test stands at partner labs have shown that the early production units are able to meet the extrapolated hardware requirements to achieve such levels of performance. A large effort is currently underway for system integration, Experimental Physics and Industrial Control System (EPICS) controls, transfer of knowledge from the partner labs to SLAC and the production and testing of 76 racks of LLRF equipment.
 
slides icon Slides THYGBE3 [14.389 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THYGBE3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL035 Design of β=0.65, 5 Cells, 644 MHz Elliptical Cavity for FRIB Upgrade cavity, linac, niobium, operation 3712
 
  • M. Xu, C. Compton, C. Contreras-Martinez, W. Hartung, S.H. Kim, S.J. Miller, P.N. Ostroumov, A.S. Plastun, J.T. Popielarski, L. Popielarski, M.A. Reaume, K. Saito, A. Taylor, J. Wei, T. Xu, Q. Zhao
    FRIB, East Lansing, USA
  • I.V. Gonin, T.N. Khabiboulline, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the U.S. DOE Office of Science under Cooperative Agreement DE-SC0000661 and the NSF under Cooperative Agreement PHY-1102511, the State of Michigan and Michigan State University.
The superconducting (SC) linac of the Facility for Rare Isotope Beams (FRIB) under construction will deliver 200 MeV/u, 400 kW beam to the target for producing rare isotopes at Michigan State of University (MSU). For further beam energy upgrade, we have designed the β = 0.65, 5 cells, 644 MHz elliptical cavity. The beam energy can be upgraded to 400 MeV/u by installing 11 cryomodules to the available space in the FRIB tunnel.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL121 The Operational Experience of E-Linac Cryogenic System at TRIUMF cryogenics, MMI, linac, operation 3928
 
  • R.R. Nagimov, Y. Bylinskii, D. Kishi, S.R. Koscielniak, A.N. Koveshnikov, R.E. Laxdal, D. Yosifov
    TRIUMF, Vancouver, Canada
 
  Funding: ARIEL is funded by CFI, the Provinces of AB, BC, MA, ON, QC, and TRIUMF. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.
The new Advanced Rare IsotopE Laboratory (ARIEL) is a major expansion of the Rare Isotope Beams (RIB) facility at TRIUMF. Superconducting radio-frequency (SRF) cavities cooled down to 2 K are the key part of ARIEL electron linear accelerator (e-linac). Design of the cryogenic system was bound to follow both phased project schedule and existing building infrastructure. Due to the scheduling of commissioning and R&D activities of ARIEL project, high availability requirements were set for e-linac cryogenic system during its commissioning stage. Various upgrades were introduced during system commissioning in order to improve overall availability and reliability of the system. This paper presents the details of operational experience, commissioning activities and continuous improvement of various operational aspects of e-linac cryogenic system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL134 Commissioning of the Prototype C75 Cavities in a CEBAF Cryomodule cavity, MMI, HOM, operation 3961
 
  • M.A. Drury, G. Cheng, G. Ciovati, E. Daly, G.K. Davis, J. Guo, R.A. Legg, F. Marhauser, T. Powers, A.V. Reilly, R.A. Rimmer
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177
Prototype cavities have been built at Jefferson Lab to increase the energy of future refurbished CEBAF cryomodules to 75 MeV in the most cost efficient way. Three such cavities, named "C75", have been built from ingot Nb material of different purity and have been processed and tested. The two better performing cavities have been assembled into a "cavity pair" and installed in the latest refurbished original CEBAF cryomodule. The cryomodule was installed and commissioned in CEBAF. The results from the commissioning of the C75 cavities, compared with the original CEBAF cavities, are presented in this article. The vertical test performance of the C75 cavities was preserved in the cryomodule with one of the cavities achieving the performance specification of an accelerating gradient of 19 MV/m with a quality factor of ~8×109 at 2.07 K. The performance in terms of microphonics and tuner operation was similar to that of original CEBAF cavities, as expected, and the high-order modes are properly damped. The quality factor of the two C75 cavities was the highest achieved in a CEBAF cryomodule, possibly due to the better magnetic flux expulsion of ingot Nb than standard fine-grain Nb.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL134  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL137 Acceptance Testing of the First Group of LCLS II Cryomodules at Jefferson Lab cavity, operation, HOM, radiation 3965
 
  • M.A. Drury, E. Daly, N.A. Huque, L.K. King, M.D. McCaughan, A.D. Solopova
    JLab, Newport News, Virginia, USA
  • J. Nelson
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the LCLS-II Project and the US Department of Energy, Contract DE-AC02-76SF00515.
The Thomas Jefferson National Accelerator Facility is currently engaged, along with several other Department of Energy (DOE) national laboratories, The Thomas Jefferson National Accelerator Facility is currently engaged, along with several other Department of Energy (DOE) national laboratories, in the Linac Co-herent Light Source II project (LCLS II). The SRF Insti-tute at Jefferson Lab is currently building 17 cryomod-ules for this project. The cryomodules are TESLA style cryomodules that have been modified for continuous wave (CW) operation and for other LCLS II specifica-tions. Each cryomodule contains eight 9-cell cavities with coaxial power couplers operating at 1.3 GHz. The cryomodules also contains a magnet package that con-sists of a quadrupole and two correctors. These cryomod-ules will be tested in the Cryomodule Test Facility (CMTF) at Jefferson Lab before shipment to the Stanford Linear Accelerator (SLAC). Acceptance testing of the LCLS II cryomodules began in December 2016. Seven cryomodules have currently completed Acceptance test-ing. This paper will summarize the results of those tests.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL137  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL141 Optimizing Procurement Strategies for LCLS-II cavity, niobium, HOM, status 3972
 
  • K.M. Wilson, G. Cheng, E. Daly, J.A. Fitzpatrick, N.A. Huque, M.L. Laney, F. Marhauser, A.D. Palczewski, H. Park, T. Peshehonoff, G. Tenbusch, M. Torres
    JLab, Newport News, Virginia, USA
 
  Funding: This work was supported by the LCLS-II Project and the U.S. Department of Energy, Contract DE-AC02-76SF00515
The SLAC National Accelerator Laboratory is currently constructing a major upgrade to its accelerator, the Linac Coherent Light Source II (LCLS-II). Several Department of Energy national laboratories, including the Thomas Jefferson National Accelerator Facility (JLab), are participating in this project. JLab is responsible for procuring a number of critical components. Over the course of this project, JLab has evolved several procurement strategies to minimize risk and improve performance while working within the constraints of budget and schedule. This paper discusses the impact of procurement choices on project technical success.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL141  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF024 Commissioning and Operation of FAST Electron Linac at Fermilab cavity, electron, experiment, MMI 4096
 
  • A.L. Romanov, C.M. Baffes, D.R. Broemmelsiek, K. Carlson, D.J. Crawford, N. Eddy, D.R. Edstrom, E.R. Harms, J. Hurd, M.J. Kucera, J.R. Leibfritz, I.L. Rakhno, J. Reid, J. Ruan, J.K. Santucci, V.D. Shiltsev, G. Stancari, R.M. Thurman-Keup, A. Valishev, A. Warner
    Fermilab, Batavia, Illinois, USA
 
  We report results of the beam commissioning and first operation of the 1.3 GHz superconducting RF electron linear accelerator at Fermilab Accelerator Science and Technology (FAST) facility. Construction of the linac was completed and the machine was commissioned with beam in 2017. The maximum total beam energy of about 300 MeV was achieved with the record energy gain of 250 MeV in the ILC-type SRF cryomodule. The pho-toinjector was tuned to produce trains of 200 pC bunches with a frequency of 3 MHz at a repetition rate of 1 Hz. This report describes the aspects of machine commission-ing such as tuning of the SRF cryomodule and beam optics optimization. We also present highlights of an experimental program carried out parasitically during the two-month run, including studies of wake-fields, and advanced beam phase space manipulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK090 First RF Test Results of Two-Cavities Accelerating Cryomodule for ARIEL eLinac at TRIUMF cavity, linac, TRIUMF, pick-up 4512
 
  • Y. Ma, Z.T. Ang, K. Fong, J.J. Keir, D. Kishi, D. Lang, R.E. Laxdal, R.R. Nagimov, B.S. Waraich, Z.Y. Yao, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  The Advanced Rare Isotope Laboratory (ARIEL) pro-ject requires a 50 MeV, 10 mA continuous-wave (CW) electron linear accelerator (e-Linac) as a driver accelera-tor. Now the stage of the 30MeV portion of the e-Linac is under commissioning which includes an injector cry-omodule(ICM) and the 1st accelerator cryomodules (ACM1) with two cavities configuration. A single 290kW klystron is used to feed the two ACM1 cavities in vector sum closed-loop control. In this paper the initial commis-sioning results of the ACM1 RF system will be present.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK096 Tuners Alignment on Two 9-Cell Cavities with Single Amplifier under Self-Excited Loop cavity, TRIUMF, detector, linac 4527
 
  • K. Fong, Z.T. Ang, M.P. Laverty, Q. Zheng
    TRIUMF, Vancouver, Canada
 
  The TRIUMF eLinac ACM consists of two 9-cell cavities which are driven by a single klystron. The output power from the klystron are split by a variable power divider and send down 2 independently phase adjustable transmission lines to their respective cryomodules. The vector sum of the fields from both cryomodules is used for phase-locked self-excited loop regulation. A semi-automatic procedure to tune the 2 cyromodules to provide the correct amplitudes and phases for self-excitation as well as beam acceleration is described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML077 Status of the Machine Protection System for ARIEL e-linac MMI, linac, electron, TRIUMF 4829
 
  • M. Alcorta, D. Dale, H. Hui, S.R. Koscielniak, K. Langton, K. LeBlanc, M. Rowe
    TRIUMF, Vancouver, Canada
 
  The Advanced Rare Isotope & Electron Linac (ARIEL) facility at TRIUMF consists of an electron linear accelerator (e-linac) capable of currents up to 10 mA at an energy of 30 MeV, giving a total available beam power of 300 kW. In addition, the e-linac can be run in pulsed operation down to beam pulses of 5 µs, up to CW. A Machine Protection System (MPS) is required to protect the accelerator from hazardous beam spills and must turn off the electron gun within 10 µs of detection. The MPS consists of two types of beam loss monitors, a front-end beam loss monitor board developed at TRIUMF, and EPICS-based controls to establish operating modes. A trip time of 10 µs has been demonstrated, along with a 106 dynamic range and sensitivity down to 100 pA. This paper is focused on the current status of the beam loss monitor detection system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)