Keyword: hadron
Paper Title Other Keywords Page
MOPMF051 LHC Operational Scenarios During 2017 Run luminosity, proton, experiment, optics 220
 
  • B. Salvachua, M. Albert, R. Alemany-Fernández, T. Argyropoulos, E. Bravin, H. Burkhardt, G.E. Crockford, JCD. Dumont, S.D. Fartoukh, K. Fuchsberger, R. Giachino, M. Giovannozzi, G.H. Hemelsoet, W. Höfle, J.M. Jowett, Y. Le Borgne, D. Nisbet, M. Pojer, L. Ponce, S. Redaelli, M. Solfaroli, R. Suykerbuyk, D.J. Walsh, J. Wenninger, M. Zerlauth
    CERN, Geneva, Switzerland
 
  During 2017, the Large Hadron Collider LHC delivered luminosity for different physics configuration in addtion to the nominal 6.5 TeV proton-proton run. About 18.5 days were dedicated to commission and to deliver special physics to the experiments. Condifurations with large beta-star of 19 m and 24 m were prepared for luminosity calibration with Van de Meer scans. A proton-proton run at 2.51 TeV took place during the last weeks of November to provide reference data for the heavy ion (Pb-Pb, p-Pb) collisions at the same equivalent nucleon energy . A very short (0.5 days) but effective ion run was scheduled where the LHC saw the first Xe beams collissions and delivered around 3 ub-1 to ATLAS and CMS. The run ended with a low event pile-up run at 6.5TeV. This contribution summarizes the operational aspects and delivered targets for the different configurations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF056 The Second LHC Long Shutdown (LS2) for the Superconducting Magnets dipole, superconducting-magnet, operation, collider 240
 
  • J.Ph. G. L. Tock, M. Bednarek, L. Bottura, E. Karentzos, S.L.N. Le Naour, F. Meuter, M. Pojer, C.E. Scheuerlein, E. Todesco, D. Tommasini, L. X. Van Den Boogaard, G.P. Willering
    CERN, Geneva, Switzerland
 
  The Large Hadron Collider (LHC) has been delivering data to the physics experiments since 2009. It first operated at a centre of mass energy of 7 TeV and 8 TeV up to the first long shutdown (LS1) in 2013-14. The 13 kA splices between the main LHC cryomagnets were consolidated during LS1. Then, it was possible to increase safely the centre of mass energy to 13 TeV. During the training campaigns, metallic debris caused short circuits in the dipole diode containers, leading to an unacceptable risk. Major interventions can only take place during multiyear shutdowns. To ensure safe operation at higher energies, hence requiring further magnets training, the electrical insulation of the 1232 dipole diodes bus-bars will be consolidated during the second LHC long shutdown (LS2) in 2019-20. The design of the reinforced electrical insulation of the dipole cold diodes and the associated project organisation are presented, including the validation tests, especially at cryogenics temperature. During LS2, maintenance interventions on the LHC cryomagnets will also be performed, following the plan based on a statistical analysis of the electrical faults. It is inscribed in the overall strategy to produce collisions at 14 TeV, the LHC design energy, and to push it further towards 15 TeV. We give a first guess on the impact on the LHC failure rate.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF090 First Studies of Ion Collimation for the LHC Using BDSIM simulation, collimation, heavy-ion, proton 341
 
  • A. Abramov, S.T. Boogert, L.J. Nevay, S.D. Walker
    JAI, Egham, Surrey, United Kingdom
 
  At the Large Hadron Collider (LHC) at CERN ion physics runs are performed in addition to proton physics runs. In ion operation the cleaning efficiency of the collimation system is lower than in the case of protons and the ion showering process is more complicated and produces a larger variety of secondary particles. In particular, lighter ion species can be produced as fragmentation products in the collimation system and specialised physics lists are required to simulate their production and propagation in matter. The Geant4 toolkit offers comprehensive physics process lists that extend to the case of arbitrary ion species at high energies. First results from a study of ion collimation for the LHC using the Geant4 physics library in BDSIM are presented here. These include simulations of a full ring loss map and particle spectra for collimator leakage for a Pb beam at injection energy in the LHC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML061 Hadron Therapy Machine Simulations Using BDSIM simulation, hadrontherapy, lattice, proton 546
 
  • W. Shields
    JAI, Egham, Surrey, United Kingdom
  • S.T. Boogert, L.J. Nevay
    Royal Holloway, University of London, Surrey, United Kingdom
  • J. Snuverink
    PSI, Villigen PSI, Switzerland
 
  Minimising the background radiation dose in hadron therapy from particle losses and secondary emissions is of the highest importance for patient protection. To achieve this, tracking particles from source to the patient delivery region in a single simulation provides a quantitative description that distinguishes the background radiation from the treatment dose arriving at the gantry's isocentre. We demonstrate the ability to simulate beam transport, particle loss studies, and background radiation tracking in an example hadron therapy machine using BDSIM, a Geant4 based Monte Carlo simulation code for tracking high energy particles within a particle accelerator and its surrounding environment. Machine optics verification is also demonstrated through comparison to existing accelerator tracking codes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML069 Enhancing Hadron Therapy through OMA proton, FEL, simulation, medical-accelerators 568
 
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie grant agreement No 675265.
Continued research into the optimization of medical accelerators is urgently required to assure the best possible cancer care for patients and this is one of the central aims of the OMA project which received 4 M€ of funding from the European Commission. A consortium of universities, research and clinical facilities, as well as partners from industry carry out an interdisciplinary R&D program across three closely interlinked scientific work packages. These address the development of novel beam imaging and diagnostics systems, studies into treatment optimization including innovative schemes for beam delivery and enhanced biological and physical models in Monte Carlo codes, as well as R&D into clinical facility design and optimization to ensure optimum patient treatment along with maximum efficiency. Selected research highlights from across these work packages will be presented and the impact on hadron therapy facilities around the world discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYGBD3 eRHIC Design Status electron, luminosity, storage-ring, proton 628
 
  • V. Ptitsyn, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, W. Guo, Y. Hao, A. Hershcovitch, H. Huang, W.A. Jackson, J. Kewisch, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, C. Montag, R.B. Palmer, B. Parker, S. Peggs, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, Long Island, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The electron-ion collider eRHIC aims at a luminosity around 1034cm-2sec-1, using strong cooling of the hadron beam. Since the required cooling techniques are not yet readily available, an initial version with a peak luminosity of 3*1033cm-2sec-1 is being developed that can later be outfitted with strong hadron cooling. We will report on the current design status and the envisioned path towards 1034cm-2sec-1 luminosity.
 
slides icon Slides TUYGBD3 [11.795 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBD3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF024 Turn-by-Turn Position Measurements at CNAO with the Libera Spark HR Prototype pick-up, electronics, instrumentation, electron 1870
 
  • M. Cargnelutti, M. Žnidarčič
    I-Tech, Solkan, Slovenia
  • G.M.A. Calvi, A. Parravicini, E. Rojatti, C. Viviani
    CNAO Foundation, Milan, Italy
 
  CNAO in Pavia is one of the first centers for hadrontherapy in Europe, treating patients since 2011. The center is an international reference for a whole new concept of machines being constructed for this purpose. The synchrotron BPM electronics is based on analog boards that compute the ratio between difference and sum signals from the shoebox pickup, later acquired by digital cards. Although the system operates reliably, it just calculates the position with 1kHz rate, while the revolution frequency ranges from 0.5 to 3 MHz. To extend the measurement possibilities for these new hadron synchrotrons, Instrumentation Technologies is developing a data acquisition system capable of acquiring the pickup signals with 125MSps ADCs and calculating bunchbybunch positions of the accelerated beam. The first prototype was tested at CNAO: the turnbyturn beam position was analyzed off line, at different energies and positions with both Protons and Carbon ions beam. This paper will presents the results achieved with the system and compares them with the measurements of the current system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF034 A Supersonic Gas Jet-Based Beam Profile Monitor Using Fluorescence for HL-LHC electron, photon, luminosity, gun 1891
 
  • H.D. Zhang, A.S. Alexandrova, R. Schnuerer, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Ady, E. Barrios Diaz, N. Chritin, O.R. Jones, R. Kersevan, T. Marriott-Dodington, S. Mazzoni, A. Rossi, G. Schneider, R. Veness
    CERN, Geneva, Switzerland
  • A.S. Alexandrova, A. Salehilashkajani, R. Schnuerer, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • P. Forck, S. Udrea
    GSI, Darmstadt, Germany
  • P. Smakulski
    WRUT, Wroclaw, Poland
 
  Funding: The HL-LHC project, the Helmholtz Association under contract VH-NG-328, the EU's 7th Framework Programme under grant agreement no 215080 and the STFC Cockcroft core grant No. ST/G008248/1.
The High-Luminosity Large Hadron Collider (HL-LHC) project aims to increase the machine luminosity by a factor of 10 as compared to the LHC's design value. To achieve this goal, a special type of electron lens is being developed. It uses a hollow electron beam which co-propagates with the hadron beam to act on any halo particles without perturbing the core of the beam. The overlapping of both beams should be carefully monitored. This contribution presents the design principle and detailed characteristics of a new supersonic gas jet-based beam profile monitor. In contrast to earlier monitors, it relies on fluorescence light emitted by the gas molecules in the jet following interaction with the primary hadron beams. A dedicated prototype has been designed and built at the Cockcroft Institute and is being commissioned. Details about monitor integration, achievable resolution and dynamic range will be given.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAG002 Tunable Q-Factor Gas-Filled RF Cavity cavity, coupling, plasma, simulation 2064
 
  • M.D. Balcazar, A. Moretti, A.V. Tollestrup, A.C. Watts, K. Yonehara, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • M.A. Cummings, A. Dudas, R.P. Johnson, G.M. Kazakevich, M.L. Neubauer
    Muons, Inc, Illinois, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 and DOE STTR Grant, No. DE-SC0013795.
Fermilab is the main institution to produce the most powerful and wide-spectrum neutrino beam. From that respective, a radiation robust beam diagnostic system is a critical element in order to maintain the quality of the neutrino beam. Within this context, a novel radiation-resistive beam profile monitor based on a gas-filled RF cavity has been proposed. The goal of this measurement is to study a tunable Q-factor RF cavity to determine the accuracy of the RF signal as a function of the quality factor. Specifically, the measurement error of the Q-factor in the RF calibration is investigated. Then, the RF system will be improved to minimize signal error.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAG002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAG003 Hadron Beam Monitor Design with Gas-Filled RF Resonators in Intense Neutrino Source cavity, scattering, target, radiation 2067
 
  • M.D. Balcazar, K. Yonehara
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 and DOE STTR Grant, No. DE-SC0013795.
For the future Long Baseline Neutrino Facility at Fermilab, a new radiation-robust hadron beam profile monitor has been proposed consisting of an interface of gas-filled radiofrequency cavity detectors in the backward region of the LBNF decay pipe. A tailored monitor layout will be used along with the new RF instrumentation. Proposed designs for the detector configuration include a variety of radially symmetric arrangements of RF resonators located at the position of maximum gradient in the beam distribution across the monitor. Until the final detector cavities are available, a prototype tunable Q-factor RF cavity will provide functional emulation for studies of the monitor layout configurations presented here.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAG003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK001 Intense Neutrino Source Front End Beam Diagnostics System R&D cavity, detector, plasma, target 2077
 
  • K. Yonehara, M.D. Balcazar, A. Moretti, A.V. Tollestrup, A.C. Watts, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • M.A. Cummings, A. Dudas, R.P. Johnson, G.M. Kazakevich, M.L. Neubauer
    Muons, Inc, Illinois, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 and DOE STTR Grant, No. DE-SC0013795.
We overview the front end beam diagnostic system R&D to prepare operation of a multi-MW proton beam for intensity frontier Neutrino experiments. One of critical issues is shorter life time of a detector with higher beam intensity due to radiation damage. We show a possible improvement of the existing ion chamber based detector, and a study of a conceptually new radiation-robust detector which is based on a gas-filled RF resonator.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF014 Fast Track Actively Shielded Nb3Sn IR Quadrupole R&D quadrupole, site, collider, coupling 2398
 
  • B. Parker, M. Anerella, J.P. Cozzolino, R.C. Gupta, R.B. Palmer, J. Schmalzle, H. Witte
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Interaction Region (IR) magnets for future Electron Ion Colliders (EIC), such as eRHIC at BNL, JLEIC at JLab and LHeC at CERN, must satisfy strongly opposing requirements. EIC IR superconducting quadrupole coils must provide strong focusing gradients, leading to large peak fields, for the high momentum hadron beam while permitting the nearby electron beam to pass through a nearly field free region. An actively shielded coil geometry does this using nested, opposite polarity, quadrupoles where the combined external fields cancel while leaving a net gradient inside. In order to fabricate and test this concept in a timely and cost effective manner we propose to reuse the inner coils from an existing high gradient Nb3Sn LARP quadrupole inside a new structure with a new NbTi active shield coil. The main challenge is to design a compact structure for applying prestress to the Nb3Sn coil that fits the restricted space inside the shield coil. We first construct a 15 cm long mechanical model of this structure with coil strain gauges to verify the design concept before proceeding with the full coil. Mechanical modeling results and our preliminary design concept are reported here.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF017 Options for the Spectrometer Magnet of the eRHIC IR dipole, shielding, septum, detector 2401
 
  • H. Witte, R.B. Palmer, B. Parker
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Presently the electron-ion collider eRHIC is under design, which aims to provide a facility with a peak luminosity of 1034cm-2sec-1. This paper outlines different concepts for the so-called B0 magnet, which is the first bending magnet after the interaction region. The B0 magnet has to provide a 1.3 T dipole field to the hadron beam, while the nearby electron beam should not be exposed to any field. Several possible solutions have been evaluated, each with their specific strengths and shortcomings. This paper presents an overview of the solutions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYGBD1 FCC: Colliders at the Energy Frontier collider, luminosity, cavity, injection 2908
 
  • M. Benedikt, F. Zimmermann
    CERN, Geneva, Switzerland
 
  The international Future Circular Collider study, launched in 2014, is finalizing a multi-volume conceptual design report. The FCC develops high-energy circular collider options based on a new 100 km tunnel. Long-term goal is a 100 TeV proton-proton collider (FCC-hh). The study also includes a high-luminosity electron-positron collider (FCC-ee), and it also examines lepton-hadron scenarios (FCC-he). Civil engineering and technical infrastructure studies were carried out. Global programs advance the development of high-field superconducting magnet technology based on Nb3Sn, the optimization of a suitable large superconducting RF system, and schemes for synchrotron radiation handling. In addition, the FCC study includes the design of the HE-LHC, housed in the LHC tunnel, and based on the same high-field magnet technology as the FCC-hh. The FCC study further includes an elaboration of the physics cases, including for heavy-ion collisions, and detector concepts, as well as staging and implementation scenarios. The FCC collaboration has grown to more than 120 institutes from 30 countries around the world. This invited talk summarizes the study achievements and the final designs.  
slides icon Slides THYGBD1 [12.508 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THYGBD1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF035 Single-Collimator Tune Shift Measurement of the Three-Stripe Collimator at the LHC impedance, octupole, luminosity, feedback 3036
 
  • S. A. Antipov
    University of Chicago, Chicago, Illinois, USA
  • D. Amorim, N. Biancacci, L.R. Carver, G. Mazzacano, A. Mereghetti, E. Métral, S. Redaelli, B. Salvant, D. Valuch
    CERN, Geneva, Switzerland
 
  Several options of low resistivity coating have been proposed for the collimator upgrade of the Large Hadron Collider. In order to study their effect on the beam dynamics a special collimator has been built and installed in the machine. Its jaws are coated with three different materials and can be moved transversely to selectively expose the beam to the chosen coating. We have measured the resistive wall tune shifts of each coating material and compared them with that of a standard Carbon Fibre Composite (CFC) collimator jaw. A resolution of the tune shift of the order of 10-5 has been achieved in the measurement. The results show a significant reduction of the resistive wall tune shift with novel materials. The largest improvement is obtained with a 5 μm Molybdenum coating of a Molybdenum-Graphite jaw. The observed tune shifts show a good agreement with the impedance model and the bench impedance and resistivity measurements. Obtained results can be used to further improve the precision of the impedance model.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF057 Instability Observations in the Large Hadron Collider During Run 2 coupling, operation, simulation, electron 3099
 
  • L.R. Carver, D. Amorim, S. A. Antipov, N. Biancacci, X. Buffat, G. Iadarola, K.S.B. Li, E.H. Maclean, L. Mether, E. Métral, B. Salvant, M. Schenk
    CERN, Geneva, Switzerland
  • L. Mether, M. Schenk
    EPFL, Lausanne, Switzerland
 
  Instabilities of many different types and characteristics have been observed in the LHC during Run 2. The origin of these instabilities come from a variety of stabilising and destabilising mechanisms. Efforts to understand these instabilities and prevent their occurrence has improved the performance of the LHC in all stages of the machine cycle. This paper aims to give an overview into some of the instability observations and details the operational steps to prevent them.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK002 Updated Model of the Resistive Wall Impedance for the Main Ring of J-PARC impedance, space-charge, kicker, injection 3204
 
  • B. Yee-Rendón, Y.H. Chin, H. Kuboki, T. Toyama
    KEK, Ibaraki, Japan
  • M. Schenk
    CERN, Geneva, Switzerland
 
  The resistive wall impedance is one of the major contributors of the impedance in the Main Ring of J-PARC. The present model assumes round chambers of stainless steel with perfect magnet boundary conditions for its surroundings. This work presents the model of the resistive wall impedances taking into account the different chamber geometries of Main Ring, the materials and more realistic surroundings. The models were benchmarked with measurements of the coherent tune shift of the Main Ring of J-PARC. The simulation of beam instabilities is a helpful tool to evaluate potential threats against the machine protection of the high intensity beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK135 Assessment of Linear and Non-Linear Optics Errors due to Beam-Beam with Multipoles for the High Luminosity LHC luminosity, optics, quadrupole, beam-beam-effects 3557
 
  • L.E. Medina Medrano
    Universidad de Guanajuato, División de Ciencias e Ingenierías, León, Mexico
  • J. Barranco García, T. Pieloni
    EPFL, Lausanne, Switzerland
  • X. Buffat, L.E. Medina Medrano, R. Tomás
    CERN, Geneva, Switzerland
 
  Funding: HL-LHC project, European Circular Energy-Frontier Collider Study, H2020 programme (Grant 654305), Swiss State Secretariat for Education, Research and Innovation (SERI), Beam project (CONACYT, Mexico).
Study of the head-on and long-range beam-beam effects in the High Luminosity LHC (HL-LHC) is of interest to evaluate their potential impact on performance (in the form of luminosity imbalance) and machine operation (collimator system), and, depending on their magnitude, correction schemes might be necessary to minimize them. In this work, both the β-beating at zero amplitude and its amplitude-dependence are computed for the current HL-LHC baseline optics and parameters, as well as the amplitude detuning, at the main interaction points and collimators. Correction of the β-beating, tune shift and footprint for the HL-LHC, as originally proposed for the LHC, via compensation of the multipolar terms of the beam-beam force with corrector magnets, is also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK135  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL146 802 MHz ERL Cavity Design and Development cavity, SRF, collider, electron 3990
 
  • F. Marhauser, S. Castagnola, W.A. Clemens, J.G. Dail, P. Dhakal, F. Fors, J. Henry, R.A. Rimmer, L. Turlington, R.S. Williams
    JLab, Newport News, Virginia, USA
  • R. Calaga, K.M. Dr. Schirm, E. Jensen
    CERN, Geneva, Switzerland
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177, and CERN Contract NR. KE3080/ATS
In the framework of a collaboration between CERN and JLab, an SRF accelerating cavity for energy recovery linacs operating at 802 MHz was developed in the context of the CERN's Large Hadron electron Collider (LHeC) design study. A single-cell and a five-cell cavity from fine grain high RRR niobium were built at JLab to validate the basic RF design in vertical tests. Two copper single-cell cavities were produced in parallel for R&D purposes at CERN. The cavity design has since been adapted as baseline for the main linac cavities in the proposed Powerful Energy Recovery Linac Experiment facility (PERLE) at Orsay. Details concerning the cavity fabrication and test results for the Nb cavities are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL146  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)