Keyword: superconducting-RF
Paper Title Other Keywords Page
WEPMF047 Performance of Samples With Novel SRF Materials and Growth Techniques cavity, SRF, niobium, site 2475
  • T.E. Oseroff, M. Ge, M. Liepe, J.T. Maniscalco, R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • S.R. McNeal
    Ultramet, Pacoima, California, USA
  • M.J. Sowa
    Veeco-CNT, Medford, USA
  Novel materials are currently being studied in an attempt to push accelerating superconducting RF cavities to support higher accelerating fields and to operate with lower power loss. Growing layers of these materials of the quality necessary has proven to be difficult. In this work, we present the SRF performance of planar samples of the promising materials, NbN and Nb¬3Sn, grown using atomic layer deposition (ALD) and chemical vapor deposition (CVD) respectively. Results are promising.  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPAL007 Upgrade of PIAVE Superconducting RFQs at INFN-Legnaro rfq, SRF, operation, cavity 3623
  • G. Bisoffi, E. Bissiato, D. Bortolato, F. Chiurlotto, T. Contran, E. Fagotti, A. Minarello, P. Modanese, E. Munaron, D. Scarpa
    INFN/LNL, Legnaro (PD), Italy
  • V. Andreev
    ITEP, Moscow, Russia
  • A. Bosotti, R. Paparella
    INFN/LASA, Segrate (MI), Italy
  • L.M.A. Ferreira
    CERN, Geneva, Switzerland
  • K. Kasprzak
    IFJ-PAN, Kraków, Poland
  • R.C. Pardo
    ANL, Argonne, Illinois, USA
  Superconducting RFQs (SRFQs), the first SC RFQs ever made operational for users, have been operated on the PIAVE SC heavy ion linac injector at INFN-Legnaro since 2006. The structure is split into two resonators and is limited to the accelerating RFQ sections. The resonators had never exceeded 80% of the design accelerating fields. In 2015, an upgrade plan started, aimed at increasing the accelerating fields, while improving their slow and fast tuning systems, repairing degraded components, imple-menting a LASER alignment method. The upgrade plan was successfully concluded in summer 2017. The resona-tors were kept stably locked for days at a field larger than the nominal one. Eventually, a test beam was accelerated successfully for 72 hours, with negligible locking issues. SRFQs entered once again routine operation in December 2017. The new features will allow to accelerate heavy ions with an A/q value as high as 8.5 (versus a former maximum A/q=7.5), allowing operation of the very first accelerated uranium beams at INFN-LNL, after the relat-ed authorizations shall have been issued.  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPAL034 Dynamic Tuner Development for Medium β Superconducting Elliptical Cavities cavity, linac, operation, SRF 3709
  • C. Contreras-Martinez, P.N. Ostroumov
    FRIB, East Lansing, USA
  • E. Borissov, S. Cheban, Y.M. Pischalnikov, V.P. Yakovlev, J.C. Yun
    Fermilab, Batavia, Illinois, USA
  Funding: Work supported by U.S. DOE SCGSR program under contract number DE-SC0014664, Michigan State University, and Fermi Research Alliance under contract N. DEAC02-07CH11959 with the U.S. DOE
The Facility for Rare Isotope Beams (FRIB) is developing a 5-cell 644 MHz βopt=0.65 elliptical cavity for a future linac energy upgrade to 400 MeV/u for the heaviest uranium ions. Superconducting elliptical cavities operated in continuous wave, such as the ones for FRIB, are prone to microphonics which can excite mechanical modes of the cavities. It has been shown that the detuning due to microphonics can be mitigated with the use of piezo actuators (fast tuner) as opposed to the costly option of increasing the input RF power. The FRIB slow/fast dynamic tuner will be based on the Fermilab experience with similar tuners like those developed for the linac coherent light source (LCLS) II and proton improvement plan (PIP) II. This paper will present the results of tuner properties on the bench.
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)