Keyword: wakefield
Paper Title Other Keywords Page
MOPMF030 Broadband Impedance of Pumping Holes and Interconnects in the FCC-hh Beamscreen impedance, coupling, electronics, injection 153
 
  • S. Arsenyev, D. Schulte
    CERN, Geneva, Switzerland
 
  In the proposed Future Circular Collider (FCC-hh) pumping holes and interconnects between sections of the beamscreen can be sources of unwanted broadband impedance, potentially leading to the transverse mode coupling instability (TMCI). The pumping holes pose a greater challenge to the impedance calculation due to their small contribution per hole. Unlike for the Large Hadron Collider (LHC), analytical methods cannot be applied due to the complex beamscreen geometry and the greater size of the holes. Instead, two computational methods are used and compared to each other. For the interconnects, the impedance due to a sophisticated system of tapers is also estimated using computational methods.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXGBE1 Status and Prospects for the AWAKE Experiment electron, plasma, proton, experiment 595
 
  • M. Turner
    CERN, Geneva, Switzerland
 
  The AWAKE Collaboration is pursuing a demonstration of proton-driven plasma wakefield acceleration of electrons. The AWAKE experiment uses a §I{400}{GeV/c} proton bunch from the CERN SPS, with a rms bunch length of 6-§I{15}{cm}, to drive wakefields in a §I10{m} long rubidium plasma with an electron density of 1014-1015cm-3. Since the drive bunch length is much longer than the plasma wavelength (λpe<§I{3}{mm}) for these plasma densities, AWAKE performed experiments to prove that the long proton bunch self-modulates in the plasma (2017). The next step is to demonstrate acceleration of electrons in the wakefields driven by the self-modulated bunch (2018). We summarize the concept of the self-modulation measurements and describe the plans and challenges for the electron acceleration experiments.  
slides icon Slides TUXGBE1 [8.883 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUXGBE1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXGBE2 Study of Ultra-High Gradient Acceleration in Carbon Nanotube Arrays plasma, electron, acceleration, experiment 599
 
  • J. Resta-López, A.S. Alexandrova, V. Rodin, Y. Wei, C.P. Welsch, G.X. Xia
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • Y. M. Li, Y. Zhao
    UMAN, Manchester, United Kingdom
 
  Solid-state based wakefield acceleration of charged particles was previously proposed to obtain extremely high gradients on the order of 1 − 10 TeV/m. In recent years the possibility of using either metallic or carbon nanotube structures is attracting new attention. The use of carbon nanotubes would allow us to accelerate and channel particles overcoming many of the limitations of using natural crystals, e.g. channeling aperture restrictions and thermal-mechanical robustness issues. In this paper, we propose a potential proof of concept experiment using carbon nanotube arrays, assuming the beam parameters and conditions of accelerator facilities already available, such as CLEAR at CERN and CLARA at Daresbury. The acceleration performance of carbon nanotube arrays is investigated by using a 2D Particle-In-Cell (PIC) model based on a multi-hollow plasma. Optimum experimental beam parameters and system layout are discussed.  
slides icon Slides TUXGBE2 [27.296 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUXGBE2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYGBE3 Recent progress of short pulse dielectric two-beam acceleration acceleration, linear-collider, collider, experiment 640
 
  • J.H. Shao, M.E. Conde, D.S. Doran, W. Gai, W. Liu, N.R. Neveu, J.F. Power, C. Whiteford, E.E. Wisniewski, L.M. Zheng
    ANL, Argonne, Illinois, USA
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
 
  Two-Beam Acceleration (TBA) is a structure-based wakefield acceleration method with the potential to meet the luminosity and cost requirements of a TeV class linear collider. The Argonne Wakefield Accelerator (AWA) facility is developing a dielectric-based short pulse TBA scheme with the potential to withstand high acceleration gradients and to achieve low fabrication cost. Recently, the dielectric short pulse TBA technology was successfully demonstrated using K-band 26 GHz structures, achieving 55 MW output power from the power extractor and 28 MeV/m gradient in the accelerator. To improve the generated rf power, an X-band 11.7 GHz power extractor has been developed, which obtained 105 MW in the high power test. In addition, a novel dielectric disk accelerator (DDA) is currently under investigation to significantly increase the efficiency of linear colliders based on short pulse TBA. Details of these research will be presented in this paper.  
slides icon Slides TUYGBE3 [2.224 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBE3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF006 Pulsed Wire Measurements of a High Field Gradient Quadrupole Wiggler quadrupole, wiggler, alignment, laser 1257
 
  • M. Kasa, A. Zholents
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Alignment of the quadrupoles in a quadrupole wiggler to sub micrometer precision is required for the collinear wakefield accelerator that is under consideration at Argonne National Laboratory for a compact Free-Electron Laser [1]. The pulsed wire measurement method is the only technique that we are aware of that allows for sub micrometer precision and the ability to distinguish between the various quadrupoles within the wiggler. A one period prototype wiggler was manufactured and subsequently measured using the pulsed wire technique. The goal of the measurements was to verify that the magnetic centers of each quadrupole could be located and aligned to each other within the required precision. The method and results are described.
[1] A. Zholents, et al., "A preliminary design of the collinear dielectric wakefield accelerator", Nucl. Instrum. Meth. A829 (2016) 190-193.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF010 A Conceptual Design of a Compact Wakefield Accelerator for a High Repetition Rate Multi User X-ray Free-Electron Laser Facility electron, GUI, quadrupole, wiggler 1266
 
  • A. Zholents, D.S. Doran, W.G. Jansma, M. Kasa, R. Kustom, J.G. Power, N.O. Strelnikov, K.J. Suthar, E. Trakhtenberg, I. Vasserman, G.J. Waldschmidt, J.Z. Xu
    ANL, Argonne, Illinois, USA
  • S. Baturin
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
  • H. Perez
    IIT, Chicago, Illinois, USA
 
  Funding: Supported by U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357
A preliminary design of a collinear wakefield accelerator is described. It is assumed that the array of such accelerators will play a central role in a free-electron laser-based x-ray user facility under consideration at Argonne National Laborator [1].
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF071 Status of Impedance Modeling for the PETRA IV impedance, lattice, synchrotron, status 1423
 
  • Y.-C. Chae, R. Wanzenberg
    DESY, Hamburg, Germany
 
  The diffraction limited synchrotron light source envisioned for the PETRA IV project will require strong focusing to produce the small emittances in both planes. The large natural chromaticity together with small dispersion will require very strong sextupoles. In order to cope with high gradient magnets the radius of vacuum chamber tends to be in the range of 10 mm, which is very small compared to the current 40-mm wide elliptic chamber. The impedance element in the PETRA III was scaled down to fit into the smaller aperture so that the short range wakepotential can be computed numerically. For instance the beam position monitor (BPM) was reduced to 60% in dimension so that it can be used in PETRA IV. Even if the actual design of hardware does not exist yet, we assume that generic feature of PETRA III model is still valid. In this paper we report the up-to-date information on impedance model of PETRA IV together with the preliminary impedance budget based on the analytical formula. We also report the specific studies carried out to understand the kickfactor scaling with the chamber aperture whose radius is in the range of 8-12 mm.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMK010 Differences in Current Dependent Tune Shifts Measured by Direct or ORM Based Methods vacuum, storage-ring, impedance, optics 1510
 
  • Y.E. Tan, R.T. Dowd
    AS - ANSTO, Clayton, Australia
 
  The change in the tunes as a function of total beam current is a well documented effect and has been attributed to quadrupole like self induced wakefields. Theoretical models presented by others have utilised direct methods (spectrum analyser) to measure the tunes in the analysis. In this report we shall present observations that show the ORM method, Linear Optics from Closed Optics (LOCO), and direct methods have significantly different tune gradients. The different tune gradients is attributed to the static (ORM) and dynamic (direct) nature of the measurements where in the static case the vacuum chamber is to be considered as a thin wall while in the dynamic case the vacuum chamber wall is to be considered as a thick wall.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMK010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML009 Design and Test Plan for a Prototype Corrugated Waveguide GUI, experiment, simulation, electron 1550
 
  • G.J. Waldschmidt, D.S. Doran, G. Ha, R. Kustom, A. Nassiri, J.G. Power, A. Zholents
    ANL, Argonne, Illinois, USA
  • A.E. Siy
    UW-Madison/PD, Madison, Wisconsin, USA
 
  A cylindrical, corrugated wakefield accelerating structure with a 1 mm radius bore is being designed to facilitate sub-terahertz Čerenkov radiation produced by an elec-tron bunch propagating along the waveguide. A 220 GHz axial mode for the wakefield is being considered. The waveguide is being optimized to maximize the trailing wakefield potential while maintaining a ratio of the trail-ing potential to the peak decelerating voltage in the bunch, or transformer ratio, of approximately 5 for the door step peak current distribution [1]. In order to evalu-ate the manufacturing tolerances and perform rf and electron beam testing of the waveguide, a 21 GHz proto-type waveguide structure will be built consisting of re-configurable parts allowing modelling of various fabrica-tion errors. Measurements with an electron beam will be performed at the Argonne Wakefield Accelerator (AWA) test facility. Analysis of the experimental layout has been performed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML022 Assessment of Transverse Instabilities in Proton Driven Hollow Plasma Wakefield Acceleration plasma, proton, electron, focusing 1581
 
  • Y. M. Li, G.X. Xia, Y. Zhao
    UMAN, Manchester, United Kingdom
  • S.J. Gessner
    CERN, Geneva, Switzerland
 
  Hollow plasma has been introduced into the proton-driven plasma wakefield accelerators to overcome the issue of beam quality degradation caused by the nonlinear transverse wakefields varying in radius and time in uniform plasma. It has been demonstrated in simulations that the electrons can be accelerated to energy frontier with well-preserved beam quality in a long hollow plasma channel. However, this scheme imposes tight requirements on the beam-channel alignment. Otherwise asymmetric transverse wakefields along the axis are induced, which could distort the driving bunch and deteriorate the witness beam quality. In this paper, by means of the 2D cartesian particle-in-cell simulations, we examine the potentially detrimental effects induced by the driving beam-channel offset and initial driver tilt, and then propose and assess the solutions to these driver inaccuracy issues.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML023 Amplitude Enhancement of the Self-Modulated Plasma Wakefields proton, plasma, focusing, ECR 1585
 
  • Y. M. Li, G.X. Xia, Y. Zhao
    UMAN, Manchester, United Kingdom
  • K.V. Lotov, A. Sosedkin
    Budker INP & NSU, Novosibirsk, Russia
 
  Seeded Self-modulation (SSM) has been demonstrated to transform a long proton bunch into many equidistant micro-bunches (e.g., the AWAKE case), which then resonantly excite strong wakefields. However, the wakefields in a uniform plasma suffer from a quick amplitude drop after reaching the peak. This is caused by a significant decrease of the wake phase velocity during self-modulation. A large number of protons slip out of focusing and decelerating regions and get lost, and thus cannot contribute to the wakefield growth. Previously suggested solutions incorporate a sharp or a linear plasma longitudinal density increase which can compensate the backward phase shift and therefore enhance the wakefields. In this paper, we propose a new plasma density profile, which can further boost the wakefield amplitude by 30%. More importantly, almost 24% of protons initially located along one plasma period survive in a micro-bunch after modulation. The underlying physics is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML040 Status of the Transverse Diagnostics at FLASHForward plasma, electron, laser, diagnostics 1630
 
  • P. Niknejadi, R.T.P. D'Arcy, A. Knetsch, V. Libov, A. Martinez de la Ossa, J. Osterhoff, K. Poder, L. Schaper
    DESY, Hamburg, Germany
  • M. Kaluza, M.B. Schwab, A. Sävert, C. Wirth
    IOQ, Jena, Germany
  • M. Kaluza
    HIJ, Jena, Germany
  • T.J. Mehrling
    LBNL, Berkeley, USA
  • C.A.J. Palmer
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  Funding: Helmholtz Institute, Bundesministerium für Bildung und Forschung, and European Union‘s Horizon 2020 research and innovation program.
Density modulations in plasma caused by a high-intensity laser or a high charge density electron pulse can generate extreme acceleration fields. Acceleration of electrons in such fields may produce ultra-relativistic, quasi-monoenergetic, ultra-short electron bunches over distances orders of magnitudes shorter than in state-of-the-art radio-frequency accelerators. FLASHForward is such a beam-driven plasma wakefield accelerator (PWFA) project at DESY with the goal of producing, characterizing, and utilizing such beams. Temporal characterization of the acceleration process is of crucial importance for improving the stability and control in PWFA beams. While measurement of the transient field of the femtosecond bunch in a single shot is challenging, in recent years novel techniques with great promise have been developed** ***. This work discusses the plans and status of the transverse diagnostics at FLASHForward.
*A. Aschikhin et. al., NIMA , Volume 806 (11 January 2016) pp. 175-183.
**A. Buck et al., Nature Physics 7, (2011) 543.
***C. J. Zhang et al., Phys. Rev. Lett. 119 (2017) 064801.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML041 Two-Stage Laser-Driven Plasma Acceleration With External Injection for EuPRAXIA plasma, electron, laser, acceleration 1634
 
  • E.N. Svystun, R.W. Aßmann, U. Dorda, A. Ferran Pousa, T. Heinemann, B. Marchetti, P.A. Walker, M.K. Weikum, J. Zhu
    DESY, Hamburg, Germany
  • A. Ferran Pousa, T. Heinemann, A. Martinez de la Ossa
    University of Hamburg, Hamburg, Germany
  • T. Heinemann
    USTRAT/SUPA, Glasgow, United Kingdom
 
  The EuPRAXIA (European Particle Research Accelerator with eXcellence In Applications) project aims at producing a conceptual design for the worldwide plasma-based accelerator facility, capable of delivering multi-GeV electron beams with high quality. This accelerator facility will be used for various user applications such as compact X-ray sources for medical imaging and high-energy physics detector tests. EuPRAXIA explores different approaches to plasma acceleration techniques. Laser-driven plasma wakefield acceleration with external injection of an RF-generated electron beam is one of the basic research directions of EuPRAXIA. We present studies of electron beam acceleration to GeV energies by a two-stage laser wakefield acceleration with external injection from an RF accelerator. Electron beam injection, acceleration and extraction from the plasma, using particle-in-cell simulations, are investigated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML042 Accurate Modeling of the Hose Instability in Plasma Based Accelerators plasma, electron, damping, simulation 1638
 
  • T.J. Mehrling, C. Benedetti, E. Esarey, W. Leemans, C.B. Schroeder
    LBNL, Berkeley, USA
 
  Funding: US Department of Energy Contract No. DE-AC02-05CH11231
The hose instability is a long standing challenge for plasma-based accelerators. It is seeded by initial transverse asymmetries of the beam or plasma phase space distributions. The beam centroid displacement is thereby amplified during the propagation in the plasma, which can lead to an unstable acceleration process. A witness beam can itself cause hosing and/or may be affected by the hosing of the drive beam. The accurate study of hosing including a witness beam is of utmost importance to facilitate stable plasma-based accelerators. In this contribution, we discuss novel methods for the mitigation of hosing and present a new model for the evolution of the plasma centroid, which enables the accurate investigation of the hose instability of drive and witness beam pair in the nonlinear blowout regime. This work enables more precise and comprehensive studies of hosing and hence, for the potential stabilization of future compact plasma-based accelerators.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML047 Optimisation of High Transformer Ratio Plasma Wakefield Acceleration at PITZ plasma, acceleration, laser, electron 1648
 
  • G. Loisch, P. Boonpornprasert, J.D. Good, M. Groß, H. Huck, M. Krasilnikov, O. Lishilin, A. Oppelt, Y. Renier, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • R. Brinkmann, A. Martinez de la Ossa, J. Osterhoff
    DESY, Hamburg, Germany
  • F.J. Grüner
    CFEL, Hamburg, Germany
  • F.J. Grüner, A. Martinez de la Ossa
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  The transformer ratio, the ratio between maximum accelerating field and maximum decelerating field in the driving bunch of a plasma wakefield accelerator (PWFA), is one of the key aspects of this acceleration scheme. It not only defines the maximum possible energy gain of the PWFA but it is also connected to the maximum percentage of energy that can be extracted from the driver, which is a limiting factor for the efficiency of the accelerator. Since in linear wakefield theory a transformer ratio of 2 cannot be exceeded with symmetrical drive bunches, any ratio above 2 is considered high. After the first demonstration of high transformer ratio acceleration in a plasma wakefield at PITZ, the photoinjector test facility at DESY, Zeuthen site, limiting aspects of the transformer ratio are under investigation. This includes e.g. the occurrence of bunch instabilities, like the transverse two stream instability, or deviations of the experimentally achieved bunch shapes from the ideal.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML049 Comparison of Fourier Signal and Error Analysis Techniques for Identifying the Self-Modulation Frequency of a Proton Bunch plasma, proton, electron, experiment 1651
 
  • S.J. Gessner
    CERN, Geneva, Switzerland
 
  The AWAKE experiment uses an ultra-high energy proton beam to create large amplitude wakefields for accelerating electrons in plasma. The proton beam is much longer than the plasma wavelength, and must be formed into small, sub- wavelength sized beamlets before it can effectively drive the wake. These beamlets are referred to as micro-bunches and are formed by the plasma self-modulation instability. An im- portant aspect of AWAKE is to measure the depth, frequency, and stability of the modulation, as this provides critical in- formation for establishing the presence of a high-amplitude wakefield driven by a self-modulation proton bunch. This paper discusses Fourier Analysis techniques for measuring the modulation frequency and compares error estimation techniques that work for both small and large datasets.
On behalf of the AWAKE Collaboration.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML074 Resonant Excitation of Accelerating Field in Dielectric Corrugated Waveguide simulation, experiment, electron, GUI 1715
 
  • A. Lyapin, S.T. Boogert, K. Lekomtsev
    JAI, Egham, Surrey, United Kingdom
  • A. Aryshev
    KEK, Ibaraki, Japan
  • A.A. Tishchenko
    MEPhI, Moscow, Russia
 
  Funding: This project has received funding from the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 655179.
Beam driven dielectric wakefield accelerators (DWAs) [*] typically operate in the terahertz frequency range, which pushes the plasma breakdown threshold for surface electric fields into the multi GV/m range. DWA technique allows one to accommodate a significant amount of charge per bunch, and opens access to conventional fabrication techniques for the accelerating structures. Resonant excitation of coherent Cherenkov radiation in DWA by a multi-bunch beam was used for selective resonant mode excitation [**] and enhancement of accelerating wakefield [***]. We investigate the resonant excitation of Cherenkov Smith-Purcell radiation [****] in a corrugated cylindrical waveguide by a multi-bunch electron beam. The accelerating field is calculated using Particle in Cell simulations and some basic post-processing is done in order to estimate the possible enhancement of the accelerating field. The aim of this work is to investigate regimes of the resonant excitation that can potentially produce accelerating gradients above 1 GV/m.
* C. Jing, Rev. Acc. Phys. and Tech. 9, 127 (2016).
** G. Andonian, APL 98, 202901 (2011).
*** J.G. Power, PRSTAB 3, 101302 (2000).
**** A.A. Ponomarenko, A.A. Tishchenko, NIMB 309, 223 (2013).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML079 A Start to End Simulation of the Laser Plasma Wakefield Acceleration Experiment at ESCULAP plasma, electron, laser, acceleration 1731
 
  • K. Wang, C. Bruni, K. Cassou, V. Chaumat, N. Delerue, D. Douillet, S. Jenzer, V. Kubytskyi, P. Lepercq, H. Purwar
    LAL, Orsay, France
  • E. Baynard, M. Pittman
    CLUPS, Orsay, France
  • J. Demailly, O. Guilbaud, S. Kazamias, B. Lucas, G. Maynard, O. Neveu, D. Ros
    CNRS LPGP Univ Paris Sud, Orsay, France
  • D. Garzella
    CEA, Gif-sur-Yvette, France
  • R. Prazeres
    CLIO/ELISE/LCP, Orsay, France
 
  We present a start to end (s2e) simulation of the Laserplasma Wake Field Accelerator (LPWA) foreseen as the ESCULAP project. We use a photo injector to produce a 5 MeV 10 pC electron bunch with a duration of 1 ps RMS, it is boosted to 10 MeV by a S-band cavity and then compressed to 74 fs RMS (30 fs FWHM) by a magnetic compression chicane (dogleg). After the dogleg, a quadrupole doublet and a triplet are utilized to match the Twiss parameters before injecting into the subsequent plasma wakefield. A 40 TW laser is used to excite plasma wakefield in the 10 cm plasma cell. An optimized configuration has been determined yielding at the plasma exit an electron beam at 180 MeV with energy spread of 4.2%, an angular divergence of 0.6 mrad and a duration of 4 fs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF042 Measurement of Beam yz Crabbing Tilt Due to Wake Fields Using Streak Camera at CESR storage-ring, positron, coupling, cavity 1905
 
  • S. Wang, D. L. Rubin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This research was supported by NSF PHYS-1068662, PHYS-1416318 and DMR-1332208.
Transverse vertical wake fields can increase the vertical emittance and distort the phase space of a bunch in a storage ring. Recently, we observed charge-dependent vertical beam size growth with a single scraper inserted through the top of the storage ring vacuum chamber. This apparent growth was due in large part to the yz coupling (vertical crabbing) induced by the wake field from the asymmetric scraper configuration. Here, we report a direct measurement of a small beam yz crabbing tilt using a streak camera. The recorded images (projected beam profiles in yz plane) are analyzed with three different methods, which yield consistent beam yz tilts. We found the directly-measured current-dependent beam tilts by the streak camera are consistent with the beam tilts calculated from a wake field model.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF061 High Gradient Pulsed Quadrupoles for Novel Accelerators and Space Charge Limited Beam Transport plasma, quadrupole, focusing, electron 2505
 
  • C. Tenholt
    CERN, Geneva, Switzerland
  • G. Loisch, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • B. Marchetti
    DESY, Hamburg, Germany
 
  Novel acceleration schemes like plasma wake-field based accelerators demand for high gradient focusing elements to match the Twiss parameters in the plasma to the transport lattice of the conventional accelerator beamlines, with typically much higher beta-functions. There are multiple candidates for achieving high gradient focusing fields, each one having certain drawbacks. Permanent magnets are limited in tunability, plasma lenses might degrade the transverse beam quality significantly and conventional magnets cannot reach very high gradients and often cannot be placed in direct proximity of the plasma accelerator because of their size. In this paper we present design considerations and simulations on compact, high gradient, pulsed quadrupoles, that could be used e.g. for final focusing of space charge dominated bunches into a LWFA (Laser Wake-Field Accelerator) at SINBAD or other facilities with similar demands. The target design gradient is 200 T/m at a physical aperture on the order of 10 mm.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF067 A High Gradient Solution for Increasing the Energy of the FERMI Linac linac, FEL, electron, laser 2525
 
  • C. Serpico, I. Cudin, S. Di Mitri, N. Shafqat, M. Svandrlik
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Bopp, R. Zennaro
    PSI, Villigen PSI, Switzerland
 
  FERMI is the seeded Free Electron Laser (FEL) user facility at Elettra laboratory in Trieste, operating in the VUV to soft X-rays spectral range. In order to extend the FEL spectral range to shorter wavelengths, a feasibility study for increasing the Linac energy from 1.5 GeV to 1.8 GeV is actually going on. The design of new S-band accelerating structures, intended to replace the present Backward Travelling Wave sections, is presented. Such design is tailored for high gradient operation, low breakdown rates and low wakefield contribution. In this paper, we will also present the first, short prototype that has been built in collaboration with Paul Scherrer Institute (PSI).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF051 Beam Impedance Evaluation for CERN PS Gate Valves by Simulation and Benchmark Measurement impedance, simulation, resonance, coupling 3080
 
  • B.K. Popovic, C. Vollinger
    CERN, Geneva, Switzerland
 
  The CERN High Luminosity LHC project calls for a doubling of beam intensity which requires a clear identification of possible longitudinal instability sources in the injector chain. This requirement yields the need to further improve the longitudinal impedance model for the Proton Synchrotron (PS). In this impedance model it is necessary to include not only obvious impedance sources, such as RF cavities and kickers but also seemingly innocuous elements like certain vacuum components. Individually these vacuum elements would give only a small impedance contribution, however, due to the large number of these elements in the machine, their resultant combined impedances impact the overall impedance budget. This paper presents the electromagnetic simulation analysis of the PS sector gate valves along with EM measurements confirming the simulation model. These measurements are especially crucial in this case since no complete mechanical model or drawings are available and assumptions had to be made regarding its interior mechanical structure.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF064 Beam Dynamics with Covariant Hamiltonians space-charge, multipole, octupole, software 3123
 
  • B.T. Folsom, E. Laface
    ESS, Lund, Sweden
 
  We demonstrate covariant beam-physics simulation through multipole magnets using Hamiltonians relying on canonical momentum. Space-charge integration using the Lienard–Wiechert potentials is also discussed. This method is compared with conventional nonlinear Lie-operator tracking and the TraceWin software package.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF085 Estimation of Dielectric Losses in the Bessy VSR Warm Beam Pipe Absorbers cavity, HOM, GUI, storage-ring 3185
 
  • T. Flisgen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • H.-W. Glock
    HZB, Berlin, Germany
  • A.V. Tsakanian
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Berlin, Germany
 
  Funding: Work supported by the German Bundesministerium für Bildung und Forschung, Land Berlin and grants of Helmholtz Association.
Currently Helmholtz Zentrum Berlin prepares the update of the BESSY II ring to BESSY VSR. The updated ring will be capable to simultaneously store short and long bunches to satisfy the various user demands. For this sake, a cryomodule accommodating two 1.5 GHz and two 1.75 GHz superconducting cavities will be installed into the storage ring. The cavity string will be equipped with warm dielectric absorber rings at both ends. Together with the waveguide dampers of the cavities, these rings damp electromagnetic fields excited by the beam. This contribution presents the estimation of the dielectric losses in the beam pipe absorber rings of the BESSY VSR module. The presented approach is based on determining a broad band impedance of the dielectric ring by exciting the numerical model with a single broad band Gaussian bunch. Subsequently, the power deposited into the ring is estimated in frequency domain by multiplying the impedance with the square of the beam current for all considered harmonics of the beam. Finally, these power contributions are added up. In addition to details of the scheme, the contribution presents results for the recent absorber layout of the BESSY VSR string.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK074 Beam Manipulation Using Self-Induced Fields in the SwissFEL Injector FEL, electron, experiment, laser 3401
 
  • S. Bettoni, P. Craievich, R. Ganter, P. Heimgartner, H. Jöhri, F. Marcellini, S. Reiche
    PSI, Villigen PSI, Switzerland
 
  Several possibilities of manipulating the electron beam using sources of wakefield are being explored. Wakefield have been successfully used to remove or enhance the energy chirp residual from the magnetic compression to control the free electron laser bandwidth (dechirper), to linearize the compressed beam (linearizer), to generate more bunches to produce two color mode, and to perform experiments of wakefield acceleration. At the SwissFEL injector we plan to install 2 m long system to accommodate sources of wakefield with different periodicities, each of them associated with one of the discussed beam manipulation. In this paper we summarize the design and the characterization of the system and the planned activities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK103 Pragmatic Method of Deducing a Wake Function for a General 3D Structure impedance, simulation, vacuum, resonance 3469
 
  • G. Skripka
    CERN, Geneva, Switzerland
  • R. Nagaoka
    SOLEIL, Gif-sur-Yvette, France
 
  A key quantity in simulating collective beam instabilities is the wake potential of a bunch of particles whose charge distribution is continuously evolving in time. However, obtaining such wake potential is only possible if a wake excited by a single particle in the surrounding environment is known. A practical self-consistent approach was developed to obtain an effective wake function from a numerical wake potential computed for a finite length bunch. The wake potential is processed to a numerical impedance which is decomposed into a set of well-known analytical wake functions. The decomposed impedance is then transformed back into time domain and, thus, converted into an effective wake function which is by nature physical and most consistent with the numerical wake potential. Though the method is limited by the initial numerical impedance data and the choice of impedance decomposition, the retrieved wake function can be used in instability simulations with a bunch whose length is comparable to that used in the electromagnetic field solver. We show that the method can be applied to a general 3D structure, which allows finding effective wake functions of realistic vacuum chambers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK115 Numerical Multiparticle Tracking Studies on Coupled-Bunch Instabilities in the Presence of RF Phase Modulation cavity, impedance, synchrotron, damping 3511
 
  • M. Sommer, B.D. Isbarn, S. Koetter, B. Riemann, T. Weis
    DELTA, Dortmund, Germany
 
  Funding: Work supported by the BMBF under contract no. 05K13PEB.
Since 2008, longitudinal coupled-bunch instabilities are suppressed at DELTA by a modulation of the phase of the accelerating RF field inside the cavity. To achieve a deeper understanding of the interaction of both effects, experimental studies have been made in 2016. These studies show a quadratic dependency of the coupled-bunch mode damping rates on the phase modulation amplitude. Recently, a numerical particle tracking code has been developed to confirm the experimental results. It is based on long range wake field effects produced inside an RF cavity acting on multi particle bunches of arbitrary charge, together with phase focusing by a phase modulated accelerating field. The numerical results confirm the quadratic dependency of damping rates on the phase shift obtained in experimental studies before.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK121 Accelerator Optimization through LIV. DAT plasma, proton, radiation, experiment 3526
 
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: LIV. DAT is supported by the STFC under contract ST/P006752/1.
The Liverpool Big Data Science (LIV. DAT) Center for Doctoral Training (CDT) is a hub for training students in managing, analysing and interpreting large, complex datasets and high rates of data flow. LIV. DAT offers a unique training approach addressing some of the biggest challenges in data intensive science to tackle a growing skills gap. It currently provides training to a cohort of almost 20 PhD students. Their research projects address R&D challenges in astronomy, nuclear, particle and accelerator physics. This contributions presents initial research results from modeling studies of the physics and biology of proton beam therapy using a Monte Carlo approach, as well as plasma-beam interaction in the cases of AWAKE and EuPRAXIA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL059 TEMPERATURE ISSUES OF THE TPS BPMS impedance, simulation, site, resonance 3781
 
  • Y.T. Huang, C.-C. Chang, C.M. Cheng, P.J. Chou, Y.C. Yang
    NSRRC, Hsinchu, Taiwan
 
  Since the TPS is capable to operate at higher currents, long-term 400mA conditioning runs were conducted. Current-dependent temperature data of BPMs were collected and analysed for both, aluminium and stainless steel BPM chambers. To better understand beam coupling effects in different types of TPS BPMs, electromagnetic and thermal simulation models were established. In this paper, we discuss associated results of such studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL084 An X-Band Lineariser for the CLARA FEL cavity, FEL, simulation, klystron 3848
 
  • L.S. Cowie, A.D. Brynes, J.K. Jones, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R. Apsimon, G. Burt, W.L. Millar
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • Ö. Mete
    UMAN, Manchester, United Kingdom
  • A.J. Moss
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  The CLARA FEL at Daresbury Laboratory will employ four S-band linacs to accelerate electron bunches to 250 MeV/c. In order to compress the bunch sufficiently to achieve peak currents suitable for FEL lasing, one must compensate for curvature imprinted on the longitudinal phase space of the bunch. For CLARA a harmonic RF linearization system has been designed to achieve this requirement. The linearization will be achieved by an X-band travelling wave cavity of the PSI/CERN design, which incorporates wake-field monitoring of the bunch position. A five-axis mover will align the cavity to the beam axis. Pulse compression of a 6 MW klystron pulse will provide the required power to achieve a 30 MV/m operational gradient.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL157 Investigation of Transverse Wakefield and Beam Break Up Effect in Irradiation Linacs cavity, experiment, linac, simulation 4020
 
  • X.C. Meng, H.B. Chen, J. Shi, Z.H. Wang, H. Zha, S.X. Zheng
    TUB, Beijing, People's Republic of China
  • G.H. Li, J.S. Liu, Y.H. Liu
    NUCTECH, Beijing, People's Republic of China
 
  Study of beam break up effect in linacs has been done in recent years. The beam-induced high order dipolar modes, especially the TM11-like mode were investigated for the linacs both in travelling wave and backward trav-elling wave. Measurements of beam-break up in a travel-ling wave linac were carried out and results are discussed. Moreover, a theoretical model was developed for the irradiation linacs to study the detailed interaction be-tween the transverse wakefield and the electron beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL157  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK126 Numerical Method for Longitudinal Dynamics of a Terahertz Cherenkov Free Electron Laser Driven by a Mev Picosecond Electron Beam electron, radiation, FEL, GUI 4614
 
  • W.W. Li, Z.G. He, Q.K. Jia, S.M. Jiang, L. Wang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • D. He
    Anhui Electrical Engineering Professional Technique College, Hefei, People's Republic of China
 
  Funding: Natural Science Foundation of China (11705198, 11775216) China Postdoctoral Science Foundation (2017M622023) Fundamental Research Funds for the Central Universities (WK2310000061)
Corrugated or dielectric structures have been widely used for producing electron bunch train or THz radiation source. Recently, a novel scheme of sub-terahertz free electron laser (FEL) from a metallic pipe with corrugated walls driven by a non-ultra-relativistic (<10 MeV) picosecond electron beam was proposed and analyzed using the Vlasov-Maxwell equations. In this paper, we use the dielectric loaded waveguide instead, and a numerical method for the longitudinal beam dynamics and electromagnetics of the FEL interaction is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK126  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK127 Terahertz Smith-Purcell Radiation From the High-Harmonic Component of Modulated Electron Beam From Dielectric Structure radiation, electron, bunching, simulation 4617
 
  • S.M. Jiang, Z.G. He, Q.K. Jia, W.W. Li, L. Wang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • D. He
    Anhui Electrical Engineering Professional Technique College, Hefei, People's Republic of China
 
  Funding: Supported by National Nature Science Foundation of China(11705198, 11775216)
In this paper, a new radiation scheme, which adopts the high order harmonic of modulated electron beam from dielectric loaded waveguide to excite the Smith-Purcell terahertz (THz) radiation, is proposed and in-vestigated by numerical simulations. The results show that the radiation with frequency close to 1.0 THz is generated, while, the fundamental bunching frequency of electron beam is 0.28 THz. Thus, this scheme offer a new method to get the higher frequency THz radiation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK127  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML002 Emittance Preservation in Plasma-Based Accelerators with Ion Motion emittance, plasma, background, ECR 4654
 
  • C. Benedetti, E. Esarey, W. Leemans, T.J. Mehrling, C.B. Schroeder
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. DOE under Contract No. DE-AC02-05CH11231.
In a plasma-accelerator-based linear collider, the density of matched, low-emittance, high-energy particle bunches required for collider applications can be orders of magnitude above the background ion density, leading to ion motion, perturbation of the focusing fields, and, hence, to beam emittance growth. By analyzing the response of the background ions to an ultrahigh density beam, analytical expressions, valid for non-relativistic ion motion, are obtained for the perturbed focusing wakefield. Initial beam distributions are derived that are equilibrium solutions, which require head-to-tail bunch shaping, enabling emittance preservation with ion motion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML006 Using Drive Rods in Inductions Cells to Reduce the Beam Break Up Instability impedance, simulation, induction, cavity 4658
 
  • N. Pogue, T.L. Houck, B.R. Poole
    LLNL, Livermore, California, USA
 
  The Beam Breakup Instability is a critical effect to reduce in high current induction accelerators. The RF modes generated inside the induction cells can deflect or degrade subsequent beam traversing the cell. Significant effort has been invested in minimizing the effect over several decades. One mechanism that is known to reduce the transverse impedance, the main observable experimentally which directly relates to the BBU amplitude, is to introduce ferrites to absorb the fields. Another, less investigated mechanism, is to disturb the modes symmetry by inserting the drive rods at the proper locations in the cell. This paper will show that the drive rods can dramatically reduce the transverse impedance, and will show that simulations are maturing towards predicting this effect. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML012 Simulations and Measurements of the Wakefield Loading Effect in Argonne Wakefield Accelerator Beamline experiment, linac, acceleration, higher-order-mode 4675
 
  • J. Upadhyay, E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
  • M.E. Conde, Q. Gao, N.R. Neveu, J.G. Power, J.H. Shao, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
  • N.R. Neveu
    IIT, Chicago, Illinois, USA
 
  A beam driven acceleration experiment in a photonic band gap (PBG) structure is planned at Argonne wakefied accelerator (AWA) facility at Argonne National Laboratory. We plan to pass a high charge (drive) beam through a travelling wave 11.7 GHz PBG structure and generate a wakefield. This wakefield will be probed by a low charge (witness) beam to demonstrate wakefield acceleration and deceleration. The drive and witness bunches will be accelerated to above 60 MeV in the main accelerator at AWA which has frequency of 1.3 GHz. The charges used in this experiment could be as high as 20 nC. To measure the exclusive effect of PBG the structure on acceleration and deceleration of the witness bunch we have to exclude the effect of beam loading of the main AWA accelerator structure. To understand the wakefield effect in AWA, we conducted an experiment where we passed the high charge (10 nC) beam through the accelerator structure which was followed by a 2 nC witness beam separated by 4 wavelength. The energy of witness beam was measured in the presence and absence of the drive beam. The beam loading was observed and quantified. The results of this work will be presented in the conference.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML013 Demonstration of the Wakefield Acceleration in an 11.7 GHz Photonic Band Gap Accelerator Structure experiment, acceleration, electron, higher-order-mode 4678
 
  • J. Upadhyay, E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
  • M.E. Conde, Q. Gao, N.R. Neveu, J.G. Power, J.H. Shao, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
 
  We plan to conduct a beam driven acceleration experiment in a photonic band gap (PBG) accelerator structure operating at 11.7 GHz at Argonne Wakefield Accelerator (AWA) facility. For the experiment, the PBG structure will be excited by a high charge (up to 10 nC) electron bunch, and a second smaller charge witness bunch will be accelerated. Because the PBG structure was fabricated with electroforming, the AWA beamline includes a Be window placed before the PBG structure that protects the cathode from contamination due to possible outgassing from the electroformed copper. The diameter of the Be window is 9 mm and the beam tube diameter of the PBG structure is 6.4 mm. The size of the high charge electron beam on Be window has to be minimized to minimize scattering. The parameters of the beamline had to be adjusted to achieve good propagation of the beam. An OPAL simulation for the AWA beamline was performed for 1, 5, and 10 nC beams. The beam size was experimentally measured at different positions in the beamline for different charges to verify simulations. Finally, the high charge electron beam was passed through the PBG structure and acceleration of the witness bunch was measured  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML014 A Metamaterial Wagon Wheel Structure for Wakefield Acceleration by Reversed Cherenkov Radiation experiment, simulation, acceleration, electron 4681
 
  • X.Y. Lu, I. Mastovsky, M.A. Shapiro, R.J. Temkin
    MIT/PSFC, Cambridge, Massachusetts, USA
  • M.E. Conde, C.-J. Jing, J.G. Power, J.H. Shao, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
 
  Funding: U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC0015566 and the U.S. Department of Energy Office of Science under Contract No. DE-AC02-06CH11357
We present the design and experimental operation on an X-band metamaterial (MTM) wagon wheel structure for wakefield acceleration. The structure was designed and fabricated at MIT, and tested at the Argonne Wakefield Accelerator (AWA) laboratory at Argonne National Lab. The MTM wagon wheel structure is an all-metal periodic structure at 11.4 GHz. The fundamental TM mode has a negative group velocity, so when an electron beam travels through, energy is extracted from the beam by reversed Cherenkov radiation, which was verified in the experiment. Single bunches up to 45 nC were sent through the structure with a beam aperture of 6 mm and generated microwave power up to 25 MW in a 2 ns pulse, in agreement with both the analytical wakefield theory and the numerical CST simulations. Two bunches with a total charge of 85 nC generated 80 MW of microwave power. The structure is scalable to a power extractor of over 1 GW by increasing the structure length from 8 cm to 22 cm.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML027 Longitudinal and Transverse Wakefields Simulations and Studies in Dielectric-Coated Circular Waveguides electron, GUI, simulation, radiation 4708
 
  • L. Ficcadenti
    Rome University La Sapienza, Roma, Italy
  • A. Biagioni
    INFN/LNF, Frascati (Roma), Italy
  • G. Castorina, D. Francescone, M. Marongiu, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
 
  In recent years, there has been a growing interest and rapid experimental progress on the use of e.m. fields produced by electron beams passing through dielectric-lined structures and on the effects they might have on the drive and witness bunches. Short ultra-relativistic electron bunches can excite very intense wakefields, which provide an efficient acceleration through the dielectric wakefield accelerators (DWA) scheme with higher gradient than that in the conventional RF LINAC. These beams can also generate high power narrow band THz coherent Cherenkov radiation. These high gradient fields may create strong instabilities on the beam itself causing issues in plasma acceleration experiments (PWFA), plasma lensing experiments and in recent beam diagnostic applications. In this work we report the results of the simulations and studies of the wakefields generated by electron beams at different lengths and charges passing on and off axis in dielectric-coated circular waveguides. We also propose a semi-analytical method to calculate these high gradient fields without resorting to time consuming simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML051 Electron Acceleration by Plasma Wave in the Presence of a Transversely Propagated Laser with Magnetic Field electron, plasma, laser, acceleration 4749
 
  • M. Yadav, S. C. Sharma
    DELTECH, New Delhi, India
  • D.N. Gupta, M. Kaur
    University of Delhi, Delhi, India
 
  It has been revealed that a relativistic plasma wave, having an extremely large electric field, may be utilized for the acceleration of plasma particles. The large accelerating field gradient driven by a plasma wave is the basic motivation behind the acceleration mechanism. Such a plasma wave can be excited by a single laser in the form wakefield in laser-plasma interactions. In this paper, we study the enhancement of electron acceleration by plasma wave in presence of a laser* propagated perpendicular to the propagation of the wake wave. Electrons trapped in the plasma wave are effectively accelerated by the additional field of the laser combined with wakefield. The additional resonance provided by the laser field contributes to the large energy gain of electrons during acceleration. The resonant enhancement of electron acceleration has been validated by single particle simulations**. The dependence of energy gain on laser intensity, laser spot size, initial electron energy, and electron trajectories have been investigated.
* G. D. Tsakiris, C. Gahn, and V. K. Tripathi, Phys. Plasmas 7, 3017 (2000)
** Maninder Kaur, and D. N. Gupta, IEEE, 45, p 2841 - 2847, (2017)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)