THPMK —  MC2 Poster Session   (03-May-18   16:00—17:30)
Paper Title Page
THPMK001 Creating Two-Pulse Beams from a Photoinjector for Two Color FEL or Beam Driven PWFA Experiments 4294
 
  • J. Andersson, J. Björklund Svensson, M. Kotur, F. Lindau, S. Thorin
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV linac is investigated as a FEL driver in the SXL project, but there is also an ongoing investigation in using the linac as a driver for beam driven plasma wakefield acceleration experiments. From both these applications, double pulses from the photoinjector within the same RF period is desired. In this paper we discuss the possibilities of using the current photoinjector at MAX IV as driver and show simulations results from the pre-injector, both for FEL applications and for PWFA applications.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK002 The Pre-Injector Design for the MAX IV SXL 4297
 
  • J. Andersson, M. Kotur, D. Kumbaro, F. Lindau, E. Mansten, D. Olsson, L.K. Roslund, S. Thorin
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  In this paper we present the current status of the design for the pre-injector (photo-cathode gun, solenoid and first linac) for the SXL project at MAX IV. The SXL project requires a higher repetition rate and since improved beam quality compared to what the current photo-cathode gun can operate at is needed, a new photo-cathode gun will be manufactured. We briefly describe the components of the pre-injector, followed by the design of the new photo-cathode gun. The design is similar to the old gun but with a new RF cavity using elliptical irises and racetrack profile main cell. The current parameters for the next gun to be manufactured are discussed, and some simulations and expected beam quality from the injector are shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK004 Pulse-Picking by Resonant Excitation (PPRE) for Timing Users at the MAX IV 3 GeV Storage Ring 4300
 
  • T. Olsson, Å. Andersson, D.K. Olssonpresenter
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  At synchrotron light storage rings there is demand for serving both high-brilliance and timing users simultaneously. At many rings this is commonly achieved by operating fill patterns with gaps of sufficient length, but this is not favorable for rings that operate with passive harmonic cavities to damp instabilities and increase Touschek lifetime by lengthening the bunches. For such rings, gaps in the fill pattern could severely reduce the achievable bunch lengths. For the MAX IV 3 GeV storage ring, sufficient bunch lengthening is also essential for conserving the ultralow emittance and reducing heat load on vacuum components at high current. It is therefore of interest to study methods to serve timing users while operating without gap in the fill pattern. Once such method is PPRE, where the transverse emittance of one bunch in the bunch train is increased by an incoherent betatron excitation. This paper presents simulations for the MAX IV 3 GeV storage ring and discusses the machine requirements as well as the achievable performance for timing users.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK007 Surface Acoustic Wave Enhancement of Photocathodes 4304
 
  • R.P. Johnson
    Muons, Inc, Illinois, USA
  • A. Afanasev, B. Dong, M. E. Zaghloul
    GWU, Washington, USA
 
  Funding: Work supported by DOE HEP STTR Grant DE-SC0017831
Numerical simulations and fabrication techniques are being used to investigate the use of surface acoustic waves to suppress electron-hole recombination on the surface of GaAs photocathodes in order to increase the quantum efficiency for polarized and unpolarized electron beam generation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK008 Commissioning of the Storage Ring for the Kharkov Generator of X-Ray Radiation NESTOR 4307
 
  • A.A. Shcherbakov, V.P. Androsov, S.V. Bazarov, V.N. Berezka, O. Bezditko, A.V. Cherkashin, A.V. Gevchuk, P. Gladkikh, S.P. Gokov, A.N. Gordienko, V.A. Grevtsev, A. Gvozd, V.E. Ivashchenko, A.A. Kalamayko, I.I. Karnaukhov, I.M. Karnaukhov, V.P. Kozin, V.P. Lyashchenko, V.S. Margin, N.I. Mocheshnikov, M. Moisieienko, A. Mytsykov, F.A. Peev, O.V. Ryezayev, V.P. Sergienko, V.O. Shpagina, N.F. Shul'ga, V. Skomorokhov, D.V. Tarasov, V.I. Trotsenko, V.V. Tsyats'ko, A.Y. Zelinsky, O.P. Zolochevskij, O.D. Zvonarjova
    NSC/KIPT, Kharkov, Ukraine
  • J.I.M. Botman
    TUE, Eindhoven, The Netherlands
 
  During 2015-2017 the X-ray source NESTOR (New Electron STOrage Ring) based on a storage ring with low beam energy and Compton scattering of intense laser beam is under commissioning at the National Science Center "Kharkov Institute of Physics and Technology Institute" (NSC KIPT). The start-up of the injector and storage ring is one of the basic task for the facility commissioning. In the paper, the results of the NESTOR X-ray source 225 MeV electron storage ring commissioning are described and further plans are discussed  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK009 Study on Improving Durability of Bialkali Photocathode for an RF-Gun with the CsBr Protective Layer 4310
 
  • J. Miyamatsu, H. Ono, M. Washio
    Waseda University, Tokyo, Japan
  • H. Iijima
    Tokyo University of Science, Tokyo, Japan
  • K. Sakaue
    Waseda University, Waseda Institute for Advanced Study, Tokyo, Japan
 
  At Waseda University, we have been studying for high quality electron beam generation and developing variety of application experiments using 1.6 cells photocathode RF-gun. We are using photocathode as the electron source, which can generate high-performance electron beam such as low emittance, short pulse. The performance of photocathodes is evaluated mainly in terms of Quantum Efficiency (Q.E.) and the lifetime. Cs-Te photocathode used in the RF-Gun at Waseda University is known for high Q.E. with UV light and relatively longer lifetime among semiconducting photocathodes. For increasing the charge of electron beam and simplify the laser system, we started introducing CsK2Sb photocathode in the RF-gun which has light sensitivity in UV and visible range, and high Q.E. with green light. However, CsK2Sb photocathode has a difficulty in durability and we observed that it was not enough for long-term operation in the RF-gun. Then we plan to improve lifetime and durability of CsK2Sb photocathode by coating the cathode surface with CsBr thin film. In this conference, we report the result of lifetime measurement of CsK2Sb photocathode with CsBr thin film and future prospects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK012 Reduction of Dynamic Multipole Content in Insertion Devices Using Flat Wires 4313
 
  • T.Y. Chung, S.D. Chen, M.-S. Chiu, S.J. Huang, C.-S. Hwang, J.C. Jan, C.Y. Kuo, Y.T. Li, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
  • C.-S. Hwang
    NCTU, Hsinchu, Taiwan
 
  Multipole errors of an insertion device are generally corrected based on measurements and analysis of the magnetic field integrals. Multipole components in a strong and narrow non-uniform field of an insertion device appear as dynamic multipoles. Flat wires were installed and commissioned to determine if the dynamic multipoles can be eliminated in an APPLE-II type undulator. In this work, we will discuss and compare the reduction of the dynamic multipole content and it's beam dynamics effects with the flat wire through an analysis of field calculations and beam-based measurements in the storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK013 A Wiggler Magnet Design for the TPS 4317
 
  • J.C. Jan, Y.L. Chupresenter, C.-S. Hwang, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) at the National Synchrotron Radiation Research Center (NSRRC) is an advanced photon source facility operating at an electron energy of 3 GeV. Ten insertion devices (IDs) have been installed in phase-I during 2015. Recently, plans and designs for several phase-II IDs including In-vacuum Undulators (IU), Cryogenic Undulators (CU), Elliptical Polarization Undulators (EPU) and Wiggler magnets are pursued at NSRRC. These IDs are expected to be installed before 2020. In particular, a room temperature wiggler magnet with 100 mm period length (W100), will be designed and installed for phase-II. The field strength of the W100 is 1.8 T and the number of main periods is four. It is designed to generate 5-50 keV photons for the microscopy beam line. The magnetic design and photon characteristics of the W100 together with its effects on the stored beam will be discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK014 Quantitative Analysis of Multipole Errors Induced by Mechanical Deformations of an Undulator 4321
 
  • T.Y. Chung, C.H. Chang, C.-S. Hwang
    NSRRC, Hsinchu, Taiwan
  • H.W. Luo
    NTHU, Hsinchu, Taiwan
 
  To minimize unwanted beam dynamics effects in a storage ring, multipole errors in an undulator are normally reduced by sorting and shimming methods. Nonetheless, an investigation of the error source is worth pursuing and interesting. Our work focuses on multipole errors introduced by mechanical deformations of an APPLE-II type undulator, which undergoes complicated forces during operation. Our results give guidelines for mechanical specifications derived from quantitative analyses.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK015 Low Momentum Compaction Lattice Operation of the Taiwan Photon Source 4325
 
  • C.-C. Kuo, C.H. Chen, J.Y. Chen, P.C. Chiu, K.T. Hsu, K.H. Hu, C.H. Huang, C.C. Liang, C.Y. Liao, Y.-C. Liu, Z.K. Liu, H.-J. Tsai, F.H. Tsengpresenter
    NSRRC, Hsinchu, Taiwan
 
  In order to provide short bunch length for picosecond time-resolved experiments and for coherent IR/THz radiation, low momentum compaction factor (alpha) lattices have been commissioned recently at the Taiwan Photon Source (TPS). The momentum compaction can be positive or negative and its value can be reduced by more than two orders of magnitude. In this paper, we discuss variable low alpha lattice optics, its beam dynamics issues, the measured momentum compaction and bunch lengths as well as beam orbit stability issues, etc.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK016 Simulation Study of the NSRRC High Brightness Linac System and Free Electron Laser 4329
 
  • W.K. Lau, C.H. Chen, H.P. Hsueh, N.Y. Huang
    NSRRC, Hsinchu, Taiwan
  • J. Wu
    SLAC, Menlo Park, California, USA
 
  A 263 MeV linac system has been designed to provide a high brightness electron beam for the NSRRC VUV FEL test facility. This system is equipped with a dogleg with linearization optics to compensate the effects of nonlinear energy chirps introduced into the system by the chirper linac voltage during bunch compression. In this study, we performed start-to-end simulation to illustrate the capability of this linac system to generate a beam that can be used to drive a SASE FEL to saturation within reasonable undulator length. It has been demonstrated that, for a 200 pC beam, such FEL has a saturated output power of ~200 MW at 6-m undulator length. Further optimization of bunch current profile and momentum spectrum is required.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK017 Experimental Study of Coherent THz Sources Driven by the NSRRC High Brightness Photo-injector 4332
 
  • M.C. Chou, K.T. Hsu, N.Y. Huang, J.-Y. Hwang, W.K. Laupresenter, A.P. Lee, C.C. Liang, G.-H. Luo
    NSRRC, Hsinchu, Taiwan
 
  Accelerator-based coherent THz radiation sources are being studied with the NSRRC high brightness photoinjector which has been installed in the Accelerator Test Area (ATA) recently. This injector is equipped with a laser-driven photocathode rf gun and a 5.2-m long S-band traveling-wave linac for beam acceleration. A few tens MeV, ultrashort bunches of ~100 fs bunch length can be produced from the injector by velocity bunching technique. Tunable narrow-band THz coherent undulator radiation (CUR) can be generated from a U100 planar undulator when it is driven by such beam. One the other hand, broadband THz coherent transition radiation (CTR) generated by passing this beam through a metallic foil is used for determination of bunch length by autocorrelation technique. The experimental setup and results are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK018 Design of a rotationally symmetric S-band photocathode RF gun 4336
 
  • Zh. X. Tang
    USTC, Hefei, Anhui, People's Republic of China
  • Z.G. He, W.W. Li, Y.J. Pei, L. Wang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The photocathode RF gun is one of the most critical components for high quality electron beam sources. The asymmetric multi-pole field contributes to the transverse emittance growth and degrades the beam quality. In order to overcome the problem, we propose a novel rotationally symmetric 1.6 cell RF gun to construct the symmetric field in this paper. The concrete proposal is that a coaxial cell with a symmetrical distribution of four grooves is concatenated to the first 0.6 cell at the photocathode end to form a new resonant cell (NRC) to mantain the symmetric multi-pole field in 1.6 cell. Our simulations indicate that 3D multi-pole fields of NRC are with the perfect symmetry. After that, the profile of the RF gun is optimized to improve the shunt impedance and mode separation and make the surface peak electric field at the photocathode end. Our simulations demonstrate promising outlook of using coaxial cell for photocathode RF guns with various applications.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK019 Generation of Tunable Femtosecond X-Rays from High-Period-Number Resonant Transition Radiation Emitters 4339
SUSPF022   use link to see paper's listing under its alternate paper code  
 
  • P. Wang, K.C. Leou
    NTHU, Hsinchu, Taiwan
  • M.C. Chou, J.-Y. Hwang, W.K. Lau, A.P. Lee
    NSRRC, Hsinchu, Taiwan
  • C.T. Lee
    ITRC, Hsinchu, Taiwan
 
  Funding: Work supported by the Ministry of Science and Technology, ROC (Taiwan).
Femtosecond resonant transition radiation (RTR) in x-ray region can be generated from alternatively stacked multilayer structures when they are driven by relativistic ultrashort electron beams. These structures can be fabricated by coating layer pairs of high and low density materials. By increasing the number of these layer pairs, narrow-band x-ray can be generated. In this report, we present our efforts on the development of a 12 keV femtosecond narrow-band x-ray source by driving high-period-number RTR emitters with the NSRRC photoinjector linac system. Radiation wavelength is tunable by varying the incident angle of the beam. A few tens MeV, ultrashort beam has been available from the photoinjector system via velocity bunching in the rf linac. A 100-period (200 layers) Mo/Si multi-layer emitters with thin substrate have been fabricated. For a 100 pC drive beam, the expected photon yield from such emitter is about 4x104.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK020 Beam-Based Alignment Procedures for Small Gap in-Vacuum Undulators at the Taiwan Photon Source 4342
 
  • Y.-C. Liu, J.C. Huang, F.H. Tsengpresenter
    NSRRC, Hsinchu, Taiwan
 
  We have developed a beam-based alignment procedure for small gap IVUs (In-vacuum undulators) at TPS, which allow us to measure the field center and mechanical canter of IVUs with 0.1 mm accuracy. The measurement method and results are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK022 Simulation for THz Coherent Undulator Radiation from Combination of Velocity Bunchings 4345
 
  • Y. Sumitomo, K. Hayakawa, Y. Hayakawa, K. Nogami, T. Sakai, Y. Takahashi, T. Tanaka
    LEBRA, Funabashi, Japan
 
  We study the effect of a combination of velocity bunchings and its application to THz coherent undulator radiation at LEBRA, Nihon U. by simulations. The velocity bunching is a technique that is commonly used to make the bunch length shorter at lower energies. However, since one velocity bunching has a correlation between bunch energy and length, we may not have so much room to change energies to obtain different coherent radiation wavelengths. Hence we propose a combination of velocity bunchings, that relaxes the restrictive correlation. We have three 4m traveling-wave accelerator tubes at LEBRA, Nihon U. The undulator is installed after the acceleration tubes and 2 x 45 degree bending magnets. Since the design of current undulator requires less than 25 MeV beam energy to obtain the radiation at THz region, the velocity bunching is reasonable for coherent radiation. We show the simulation results of a combination of velocity bunchings of the three tubes and the magnetic bunching at bending magnets, suitable for the coherent undulator radiation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK023 Coherent Transition Radiation Generated from Transverse Electron Density Modulation 4348
 
  • A. Halavanau, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • A.I. Benediktovitch
    BSU, Minsk, Belarus, Belarus
  • S.N. Galyamin, A.V. Tyukhtin
    Saint Petersburg State University, Saint Petersburg, Russia
  • P. Piot
    Fermilab, Batavia, Illinois, USA
 
  Coherent Transition radiation (CTR) of a given frequency is commonly generated with longitudinal electron bunch trains. In this paper we present a study of CTR production from electron transverse density modulation. We demonstrate via numerical simulations a simple technique to generate THz-scale frequencies from mm-scale transversely separated electron beamlets. The results and a potential experimental setup are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK026 Mobile Free-Electron Laser for Remote Atmospheric Survey 4351
SUSPF006   use link to see paper's listing under its alternate paper code  
 
  • S. Johnson, G.A. Krafft, B. Terzić
    ODU, Norfolk, Virginia, USA
  • G.A. Krafft
    JLab, Newport News, Virginia, USA
 
  Funding: This paper is authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05- 06OR23177. E.J. was supported by the Virginia Space Grant Consortium, grant number 16-589.
Reliable atmospheric surveys for carbon distributions will be essential to building an understanding of the Earth's carbon cycle and the role it plays in climate change. One of the core needs of NASA 's Active Sensing of CO2 Over Nights, Days and Seasons (ASCENDS) Mission is to advance the range and precision of current remote atmospheric survey techniques. The feasibility of using accelerator-based sources of infrared light to improve current airborne lidar systems has been explored. A literary review has been conducted to asses the needs of ASCENDS versus the current capabilities of modern atmospheric survey technology, and the parameters of a free electron laser (FEL) source were calculated for a lidar system that will meet these needs. By using the "Next Linear Collider" from the Stanford Linear Accelerator Center (SLAC), a mobile FEL-based lidar may be constructed for airborne surveillance. The calculated energy of the lidar pulse is 0.1 joule: this output is a two orders of magnitude gain over current lidar systems, so in principle, the mobile FEL will exceed the needs of ASCENDS. Further research will be required to asses other challenges to mobilizing the FEL technology.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK028 Inverse Free Electron Laser Separatrix Crossing for Energy Gain and Stability 4354
SUSPF030   use link to see paper's listing under its alternate paper code  
 
  • N.S. Sudar, P. Musumeci
    UCLA, Los Angeles, USA
  • D. Garzella
    CEA, Gif-sur-Yvette, France
 
  The laser wakefield accelerator (LWFA) has been proposed as a driver for next generation compact light sources. However, the beams produced by LWFA's typically exhibit correlated energy spread and energy jitter too large to drive the Free Electron Laser instability. We present here a novel scheme whereby using a highly non-linear strongly tapered undulator interaction directly after the LWFA we are able to trap and accelerate a large fraction of charge in the moving Inverse Free Electron Laser ponderomotive bucket. The final correlated energy spread and output energy are determined by the final bucket height and central energy of the ponderomotive bucket which are both determined by the stagnant undulator parameters, resulting in a significant decrease in the normalized energy spread (< 1%) and output energy jitter (< 1%). This interaction is treated both analytically and numerically.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK029 Towards an Upgrade of the Swiss Light Source 4358
 
  • A. Streun, M. Aibapresenter, M. Böge, T. Garvey, V. Schlott
    PSI, Villigen PSI, Switzerland
 
  An upgrade of the Swiss Light Source (SLS) is planned for the period 2021-24. The existing 12-TBA (triple bend achromat) lattice will be exchanged by a 12-7BA (7-bend achromat) lattice in order to reduce the emittance from present 5.5 nm down to about 125 pm at 2.4 GeV / 400 mA (IBS included). The new lattice is based on longitudinal gradient bends and reverse bends to realize low emittance despite the small circumference of 290 m. A conceptual design has been established. We present project status, lattice design and work in progress with emphasis on beam dynamics issues.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK031 Elliptically Polarizing Undulator Design for PAL-XFEL 4362
 
  • S.J. Lee, J.H. Han, D.E. Kimpresenter
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2017R1C1B1012852).
Elliptically polarizing undulator (EPU) is under consideration as after-burner for the PAL-XFEL soft X-ray beamline to control the FEL polarization. In the soft X-ray line, seven planar undulators with a 35 mm period and 5 m length are in operation. To provide a polarization control of the FEL in the 1 to 3 nm wavelength, we compare the two types of EPUs, APPLE-II, and APPLE-X. The K value ranges for various operation modes are numerically studied for two undulator periods, 35 and 40 mm, of these EPU types.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK032 RADFET Installation at PAL-XFEL Undulator 4366
 
  • J.H. Han, Y.G. Jung, D.E. Kimpresenter, S.J. Lee, G. Mun
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Two undulator beamlines, one hard X-ray and one soft X-ray, are in operation at PAL-XFEL. Radiation produced during the FEL operation may impair the magnetic property of the undulator magnets and affect the FEL performance. Accumulated radiation at the undulator sections is being measured by using optically stimulated luminescent dosimeters (OSLDs) once per few months. Over 10 Gy gamma ray was detected at some locations at both undulator beamlines. However, in the measurement using the OSLDs we do not have information on which accelerator operation modes produce such high level of radiation on the undulators. To measure accumulated radiation in real time, we installed radiation-sensing field-effect transistors (RADFETs). We report the characteristics of the RADFET sensors and the installation at the PAL-XFEL undulator beamlines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK033 PAL-XFEL Linac RF System Status 4369
 
  • H.-S. Lee, Heo, J.Y. Heo, J.H. Hong, H.-S. Kang, K.H. Kim, S.H. Kim, D.H. Na, S.S. Park, Y.J. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: Ministry of Science and ICT
The PAL-XFEL Linear Accelerator began user support in March 2017 after one year of RF conditioning in 2016. The energy jitter was 0.013% when operating the H-X linear accelerator with 46 modulators, Klystron, LLRF, SSA and vacuum system at 6.838 GeV energy during user support period. So far, we have replaced four klystrons and 10 thyratron switches. We also measured the influence of temperature changes of RF components according to repetition rates of the machine. We will report on the measurement results of this operating experience and performance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK034 Study on Effect of Phase Shifter on FEL Intensity at PAL-XFEL 4372
 
  • C.H. Shim
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • J.H. Hong, H. Yang
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  In the PAL-XFEL, the phase shifters are installed be-tween the undulator modules to match the phase of the electron beam and the FEL radiation field at the entrance of next undulator. By varying the phase shifter gap, the FEL intensity measured at the QBPM oscillates and sine curve fitting can be applied to it for optimizing the FEL intensity. However, the optimal gap determined from fitting result is slightly different from the gap at which the maximum intensity is measured because distorted shapes are appeared from some phase shifters. In this presentation, we report and discuss the experimental results of phase shifter gap scanning with simulation results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK035 Generation of Isolated Zeptosecond Pulse in Gamma-Ray Free Electron Laser 4375
 
  • C.H. Shim, D.E. Kim
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • Y.W. Parc
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  An X-ray pulse with zeptosecond pulse duration is an essential tool to resolve the nuclear dynamics. To make such a short pulse duration, we need to make a very wide frequency range radiation which is known from the uncertainty principle. The spectral range of an isolated zeptosecond pulse has to be of order of few keV which is called as a gamma ray. In this presentation, the generation of an isolated zeptosecond pulses in the gamma-ray free electron laser is studied by the simulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK042 Two and Multiple Bunches at LCLS 4378
 
  • F.-J. Decker, K.L.F. Bane, R.N. Coffee, W.S. Colocho, S. Gilevich, S.H. Glenzer, A.A. Lutman, A. Miahnahri, D.F. Ratner, J.C. Sheppard, S. Vetter
    SLAC, Menlo Park, California, USA
 
  The LCLS X-Ray FEL at SLAC typically delivers one bunch at the time. Different schemes of two pulses have been developed: Two bucket, Twin bunch, split undulator, and fresh slice. Here we discuss a four bunch or even eight bunch setup, where the separation between the individual bunches is two RF buckets: 0.7 ns.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK043 Timing Stability at LCLS 4381
 
  • F.-J. Decker, R.N. Coffee, W.S. Colocho, J.M. Glownia, K. Gumerlock, B.L. Hill, T.J. Maxwell, J. May
    SLAC, Menlo Park, California, USA
 
  The beam stability of the LCLS (Linac Coherent Light Source) has increased substantially over the years. Transversely it is a fraction of the beam size. The energy jitter was reduced from five times the energy spread to a fraction of it. Only the timing jitter is left. It got improved during the energy jitter reduction, but typically left alone. So we have five dimensions of the six-dimensional phase space covered with feedbacks and special 60-Hz jitter setups which eliminate the difference between every other pulse, but not for the general timing setup. We describe a scheme with the RF of the XTCAV, which could be used for other setups like lasers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK045 Generation of High Power, High Intensity, Ultra Short X-Ray FEL Pulses 4384
 
  • M.W. Guetg, Y. Ding, Z. Huang, A.A. Lutman
    SLAC, Menlo Park, California, USA
 
  X-ray Free Electron Lasers combine high pulse power, short pulse length, narrow bandwidth and a high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key XFEL applications including single molecule imaging and novel nonlinear X-ray methods. We will present experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit, while reducing the photon pulse length to 10 fs. This was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw, and by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK046 Advanced Fresh-Slice Beam Manipulations for FEL X-Ray Applications 4387
 
  • A.A. Lutman, Y. Ding, M.W. Guetgpresenter, Z. Huang, J. Krzywinski, J.P. MacArthur, A. Marinelli, T.J. Maxwell
    SLAC, Menlo Park, California, USA
  • C. Emma
    UCLA, Los Angeles, USA
 
  The recent development of the Fresh-slice technique granted control on which temporal slice lases in each undulator section in an X-ray Free-electron laser. Fresh-slice has been used for several experiments at the Linac Coherent Light Source for the generation of customizable high power two-color beams, and increased the performance of self-seeding schemes. As a novel development of the technique we present the demonstration of multistage self-amplified spontaneous-emission amplification schemes for the production of high-power ultra short pulses and improved control of the temporal duration of each pulse in multi-pulse schemes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK048 The Design and Construction of a Novel Dual-Mode Dual-Frequency Linac Design 4391
SUSPF045   use link to see paper's listing under its alternate paper code  
 
  • M.H. Nasr, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  One promising approach in boosting accelerators efficiency is dual-mode simultaneous operation. In our work, the topic of dual-mode acceleration is studied from a wider perspective with new approaches and tools. We present a new type of accelerator structures that operates simultaneously with two modes and two frequencies. The frequencies are not constrained to be harmonically related, but rather have a common sub-harmonic. These designs will utilize a newly developed parallel-feeding network that feeds each individual accelerating cell independently using a distributed feeding network. As a result, the design problem converges to a single-cell design with identical cells. The cells are designed for maximum efficiency using new geometrical optimization that utilizes nonuniform rational B-spline (NURBS) with a series of control points. We will present a study on the topic for S-band simultaneous operation with C-band or X-band.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK049 New Geometrical-Optimization Approach using Splines for Enhanced Accelerator Cavities' Performance 4395
 
  • M.H. Nasr, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Over the past decades accelerator scientists made a huge effort in advancing the technology of particle accelerators, which lead to state-of-the-art fabrication techniques as well as simulation tools. Combining these advancements with the large boosting in computing speed provides large flexibility and motivation to investigate new accelerator geometries. In this paper, we describe a new optimization approach for the geometry of accelerating cells. This approach uses a set of control points with variable positions to control a non-uniform rational B-spline (NURBS), which describes the cavity shape. The positions of the control points are then optimized using differential-evolution optimization to maximize/minimize a defined optimization function, which is defined by the user and depends on the cavity parameters such as the shunt impedance, wall losses, peak surface fields…etc. This optimization approach leads to accelerator geometries with enhanced performance and very smooth surface fields.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK051 Theoretical Formulation of Improved SASE FEL Based on Slippage Enhancement Scheme 4398
 
  • C.-Y. Tsai, J. Wu, C. Yang, G. Zhou
    SLAC, Menlo Park, California, USA
  • M. Yoon
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • G. Zhou
    IHEP, Beijing, People's Republic of China
 
  Funding: The work was supported by the US Department of Energy (DOE) under contract DE- AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164.
A method to improve the spectral brightness of self-amplified spontaneous emission (SASE) based on slippage enhancement has been proposed*, **. The implementation is to insert a series of magnetic chicanes to introduce a path-length delay of the electron beam to the radiation beam. By correlating the electron slices of neighboring cooperation distances this can lengthen the collective interaction and thus enhance the spectral brightness. In the existing literature most studies rely on numerical simulations and there is limited work on analytical analysis. In this paper we formulate the problem of slippage enhanced SASE (SeSASE) high-gain FEL with inclusion of by-pass magnetic chicanes. The analysis takes the finite energy spread of the electron beam and the nonzero momentum compaction of the chicane into consideration. The evolution of spectral bandwidth of SeSASE is compared with that of usual SASE in theory and numerical simulations. The effects of finite beam energy spread and non-isochronisity are also quantified.
*J. Wu et al., FEL2012
**B. W. J. McNeil et al., PRL 110, 134802 (2013)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK052 Numerical Simulation of Phase-Shift Method for Fel Power Enhancement in PAL-XFEL 4402
 
  • C.-Y. Tsai, J. Wu, C. Yang, G. Zhou
    SLAC, Menlo Park, California, USA
  • H.-S. Kang
    PAL, Pohang, Kyungbuk, Republic of Korea
  • M. Yoon
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • G. Zhou
    IHEP, Beijing, People's Republic of China
 
  Funding: The work was supported by the US Department of Energy (DOE) under contract DE- AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164.
Recently the phase jump method for efficiency enhancement in free-electron laser (FEL) was proposed*. One of the unique features of PAL-XFEL with phase shifters may be taken for the experimental demonstration of this phase jump scheme. In this paper we numerically investigate the scheme using the three-dimensional numerical simulation code GENESIS**. The physical parameters are based on hard x-ray line of PAL-XFEL***. The preliminary simulation results indicate that this potential phase jump scheme can enhance at least one order of magnitude of FEL power performance. Combination of this scheme with undulator tapering is also discussed in this paper.
*A. Mak, F. Curbis, and S. Werin, PRAB 20, 060703 (2017)
**S. Rieche, NIMA 429(1):243-248 (1999)
***I. S. Ko et al., Appl. Sci. 2017, 7, 479 (2017)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK053 Simulation for LCLS-II Hard X-ray Self Seeding Scheme 4406
 
  • C. Yang, Y. Feng, J. Krzywinski, T.O. Raubenheimer, C.-Y. Tsaipresenter, J. Wu, M. Yoon, G. Zhou
    SLAC, Menlo Park, California, USA
  • H.X. Deng
    SINAP, Shanghai, People's Republic of China
  • D.H. He
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • Y. Hong, B. Yang
    University of Texas at Arlington, Arlington, USA
  • X.F. Wang
    CIAE, Beijing, People's Republic of China
  • M. Yoon
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • G. Zhou
    IHEP, Beijing, People's Republic of China
 
  Funding: The work was supported by the US Department of Energy (DOE) under contract DE-AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164.
Typical SASE FELs have poor temporal coherence because of starting from shot noise. Self-seeding scheme is an approach to improve the longitudinal coherence. The single crystal monochromator self-seeding has been in successful operation in LCLS. For the high repetition rate LCLS-II machine, for damage consideration, it was initially proposed to have a two-stage self-seeding scheme, yet we have found the two-stage self-seeding scheme has no advantage over one-stage self-seeding scheme. In this paper, we investigate the optimal self-seeding configuration of LCLS-II for different photon energies, and present a comparison between one-stage and two-stage self-seeding scheme of LCLS-II.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK054 Analysis of 1D FEL Sideband Instability with Inclusion of Energy Detune and Space Charge 4410
 
  • C.-Y. Tsai, J. Wu, C. Yang, G. Zhou
    SLAC, Menlo Park, California, USA
  • M. Yoon
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  Funding: The work was supported by the US Department of Energy (DOE) under contract DE- AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164.
It has been known that free-electron laser (FEL) is capable of generating a coherent high-power radiation over a broad spectrum. Recently there is a great interest in pursuing higher peak power (for example, at terawatt level) in FEL that can enable coherent diffraction imaging and probe fundamental high-field physics. The FEL radiation power can be increased by virtue of undulator tapering. However the FEL sideband signal begins to exponentially grow in the post-saturation regime. In this paper we extend our sideband analysis* by including both the energy detune due to discrete undulator tapering and longitudinal space charge in an effective 1-D model. A dispersion relation with explicit energy detune and space charge is derived. The study is carried out semi-analytically and compared with simulations. The impact of energy detune and space charge is analyzed.
* C.-Y. Tsai et al., Analysis of the sideband instability based on a one-dimensional high-gain free electron laser model, PRAB (accepted)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK055 Self Seeding Scheme for LCLS-II-HE 4414
 
  • C. Yang, Y. Feng, J. Krzywinski, T.O. Raubenheimer, C.-Y. Tsaipresenter, J. Wu, M. Yoon, G. Zhou
    SLAC, Menlo Park, California, USA
  • H.X. Deng, X.F. Wang
    SINAP, Shanghai, People's Republic of China
  • D.H. He
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • Y. Hong, B. Yang
    University of Texas at Arlington, Arlington, USA
  • M. Yoon
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • G. Zhou
    IHEP, Beijing, People's Republic of China
 
  Funding: The work was supported by the US Department of Energy (DOE) under contract DE-AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164.
Self-seeding is a reliable approach to generate fully coherent FEL pulses. Hard X-ray self-seeding can be realized by using a single crystal in Bragg transmission geometry. However, for a high repetition rate machine, the heat load on the crystal may become an issue. In this paper, we will study the facility performance of LCLS-II-HE by numerical simulations, and discuss the heat load and optimal undulator baseline configuration of LCLS-II-HE self-seeding scheme, and study the emittance tolerance of the LCLS-II-HE.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK056 Effect of Transverse Radiation Defocusing in Post-Saturation Regime of High-Gain X-Ray Free-Electron Laser 4418
 
  • C.-Y. Tsai, J. Wu, C. Yang, G. Zhou
    SLAC, Menlo Park, California, USA
  • M. Yoon
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • G. Zhou
    IHEP, Beijing, People's Republic of China
 
  Funding: The work was supported by the US Department of Energy (DOE) under contract DE- AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164.
When untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation point where the FEL power growth stops. In addition to the sideband instability, lack of transverse radiation focusing in the post-saturation regime can be another major reason leading to occurrence of the second saturation. In this paper we study the transverse diffraction effect and its impact on tapered FEL in the post-saturation regime. The study is carried out analytically together with three-dimensional numerical simulation. The numerical parameters are taken from LCLS-like electron beam and undulator system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK058 RF Design of the X-band Linac for the EuPRAXIA@SPARC_LAB Project 4422
SUSPF016   use link to see paper's listing under its alternate paper code  
 
  • M. Diomede
    Sapienza University of Rome, Rome, Italy
  • D. Alesini, M. Bellaveglia, B. Buonomo, F. Cardelli, E. Chiadroni, G. Di Raddo, R.D. Di Raddo, M. Diomede, M. Ferrario, A. Gallo, A. Ghigo, A. Giribono, V.L. Lollo, L. Piersanti, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati (Roma), Italy
  • N. Catalán Lasheras, A. Grudiev, W. Wuensch
    CERN, Geneva, Switzerland
 
  We illustrate the RF design of the X-band linac for the upgrade of the SPARC_LAB facility at INFN-LNF (EuPRAXIA@SPARC_LAB). The structures are travelling wave (TW) cavities, working on the 2π/3 mode, fed by klystrons with pulse compressor systems. The tapering of the cells along the structure and the cell profiles have been optimized to maximize the effective shunt impedance keeping under control the maximum value of the modified Poynting vector, while the couplers have been designed to have a symmetric feeding and a reduced pulsed heating. In the paper we also present the RF power distribution layout of the accelerating module and a preliminary mechanical design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK059 Commissioning of Front End of CLARA Facility at Daresbury Laboratory 4426
 
  • D. Angal-Kalinin, A.D. Brynes, R.K. Buckley, S.R. Buckley, J.A. Clarke, L.S. Cowie, K.D. Dumbell, D.J. Dunning, B.D. Fell, P. Goudket, A.R. Goulden, S.A. Griffiths, F. Jackson, S.P. Jamison, J.K. Jones, P.A. McIntosh, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, A.J. Moss, B.D. Muratori, T.C.Q. Noakes, T.J. Price, M.D. Roper, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, R.J. Smith, E.W. Snedden, N. Thompson, C. Tollervey, R. Valizadeh, D.A. Walsh, T.M. Weston, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.D. Brynes, J.A. Clarke, L.S. Cowie, K.D. Dumbell, D.J. Dunning, P. Goudket, F. Jackson, S.P. Jamison, J.K. Jones, P.A. McIntosh, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, A.J. Moss, B.D. Muratori, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, N. Thompson, R. Valizadeh, A.E. Wheelhouse, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • R.J. Cash, R.F. Clarke, G. Cox, G.P. Diakun, A. Gallagher, K.D. Gleave, M.D. Hancock, J.P. Hindley, C. Hodgkinson, A. Oates, J.T.G. Wilson
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  CLARA (Compact Linear Accelerator for Research and Applications) is a Free Electron Laser (FEL) test facility being developed at STFC Daresbury Laboratory. The principal aim of CLARA is to test advanced FEL schemes which can later be implemented on existing and future short wavelength FELs. The installation of the Front End (FE) section of CLARA, a S-bend merging with existing VELA (Versatile Electron Linear Accelerator) beam line and installation of a high repetition rate RF gun on VELA was completed in 2017. First beam commissioning results and high level software developments are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK060 Start-to-End Simulations of the CLARA FEL Test Facility 4430
 
  • D.J. Dunning, D. Angal-Kalinin, A.D. Brynes, L.T. Campbell, H.M. Castaneda Cortes, J.K. Jones, J.W. McKenzie, N. Thompson, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • D. Angal-Kalinin, A.D. Brynes, D.J. Dunning, J.K. Jones, J.W. McKenzie, B.W.J. MᶜNeil, N. Thompson, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • L.T. Campbell, B.W.J. MᶜNeil, P.T. Traczykowski
    USTRAT/SUPA, Glasgow, United Kingdom
  • B.S. Kyle
    University of Manchester, Manchester, United Kingdom
  • B.S. Kyle
    UMAN, Manchester, United Kingdom
  • J.D.A. Smith
    TXUK, Warrington, United Kingdom
 
  CLARA is a new FEL test facility being developed at STFC Daresbury Laboratory in the UK, aiming to deliver advanced FEL capabilities including few-cycle pulse generation and Fourier transform limited output. Commissioning is underway on the front-end (photo-injector and first linac) while the later stages are being procured and assembled. Start-to-end (S2E) simulations of the full facility are presented, including optimisation of the accelerator setup to deliver the required properties of one of the electron beam modes specified for FEL operation. FEL simulations are performed using the Genesis 1.3 and Puffin codes and the results are compared.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK061 Isolated Few-Cycle Pulse Generation in X-Ray Free-Electron Lasers 4434
 
  • D.J. Dunning, L.T. Campbell, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • L.T. Campbell, B.W.J. MᶜNeil
    USTRAT/SUPA, Glasgow, United Kingdom
  • D.J. Dunning, B.W.J. MᶜNeil, N. Thompson
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J.D.A. Smith
    TXUK, Warrington, United Kingdom
 
  X-ray free-electron lasers are promising candidates to deliver high-brightness radiation pulses with duration significantly shorter than the present leading technique, high harmonic generation (HHG). This would extend attosecond science to probe ultrafast dynamics with even finer resolution. To do so requires breaking below a characteristic FEL timescale of typically a few hundred optical cycles, dictated by the relative slippage of the radiation and electrons during amplification. The concept of mode-locking enables this, with the mode-locked afterburner configuration predicted to deliver few-cycle pulses (~ 1 attosecond at hard X-ray). However such techniques would produce a train of closely separated pulses, while an isolated pulse would be preferable for some types of experiment. Building on previous techniques, a new concept has been developed for isolated few-cycle pulse generation and it is presented alongside simulation studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK062 Transverse Energy Distribution Measurements for Polycrystalline and (100) Copper Photocathodes with Known Levels of Surface Roughness 4438
 
  • L.B. Jones, B.L. Militsyn, T.C.Q. Noakes
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • L.B. Jones, D.P. Juarez-Lopez, B.L. Militsyn, T.C.Q. Noakes, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • D.P. Juarez-Lopez, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work is part of EuCARD-2, partly-funded by the European Commission, GA 312453.
The minimum achievable emittance in an electron accelerator depends strongly on the intrinsic emittance of the photocathode electron source. This is measureable as the mean longitudinal and transverse energy spreads in the photoemitted electrons. ASTeC's Transverse Energy Spread Spectrometer (TESS)* experimental facility can be used with III-V semiconductor, multi-alkali and metal photocathodes to measure transverse and longitudinal energy distributions. Our R&D facilities also include in-vacuum quantum efficiency measurement, XPS, STM, plus ex-vacuum optical and STM microscopy for surface metrology. Intrinsic emittance is strongly affected by the photocathode surface roughness**, and the development of techniques to manufacture the smoothest photocathode is a priority for the electron source community. We present energy distribution measurements for electrons emitted from copper photocathodes with both defined single-crystal (100) and polycrystalline surfaces with measured levels of surface roughness.
* Proc. FEL'13, TUPPS033, pp. 290-293.
** Proc. FEL'06, THPPH013, pp. 583-586.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK063 Photocathode Preparation and Characteristics of the Electron Source for the VELA/CLARA Facility 4442
 
  • T.C.Q. Noakes, D. Angal-Kalinin, L.S. Cowie, F. Jackson, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, M.D. Roper, E.W. Snedden, R. Valizadeh, D.A. Walsh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • D. Angal-Kalinin, L.S. Cowie, F. Jackson, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, R. Valizadeh
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The VELA and CLARA front end accelerators at Daresbury are test facilities with a focus on FEL research and industrial applications of electron beams. Recently the CLARA injector has been commissioned with acceleration of beam to 50 MeV. For several years a normal conducting 2.5 cell S-band cavity RF gun operated at up to 80 MV/m has been used as the electron source for both VELA and CLARA. For further beam acceleration an S-band travelling wave 2m long cavity has been used. The gun has used several different copper cathodes throughout its operational life, employing different preparation techniques. Oxygen plasma treatment is a well-known procedure for removing hydrocarbon contamination from surfaces whereas Argon plasma treatment also removes contaminants and typically leaves a thinner oxide at the surface. In this study we compare dark current (from field emission), as measured directly after the gun, for these alternate surface preparations and also present results from post-use electron microscopy analysis of the photocathodes. Electromagnetic simulations are used to help explain the results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK064 RF System for SXFEL: C-band, X-band and S-band 4446
 
  • W. Fang, Q. Gu, X.X. Huang, L. Li, Z.B. Li, J.H. Tan, C.C. Xiao, J.Q. Zhang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  Shanghai Soft X-ray FEL facility is under commissioning now, which linac is compased of one S-band injector, C-band main linac and X-band linearizer. In SXFEL S-band injector could provide 200MeV beam energy based on 4 RF power unit, and then 6 C-band RF units boost beam energy to 840MeV based on 33MV/m at least, which will be ramped to 40MV/m in the ungrading. In the middle of S-band and C-band RF system, a X-band RF unit is used as linearizer to make energy spread of electron beam linear distribution, which is important for bunch compressor and FEL radiation. In this paper, details of RF system design and status of SXFEL is introduced, and some operation results are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK066 Cryogenic Permanent Magnet Undulator of SSRF 4449
 
  • Y.Z. He, M.F. Qian, H.F. Wang, W. Zhang, Q.G. Zhou
    SINAP, Shanghai, People's Republic of China
 
  Funding: Work supported by the State Key Lab of Advanced Metals and Materials (2016-Z03) and the Youth Innovation Promotion Association of CAS (Grant No: 2017305)
The two Cryogenic Permanent Magnet Undulators (CPMU18 with PrFeB magnets P46H and CPMU20 with NdFeB magnets N48H) were designed and developed in SSRF in the past few years (2014-2017).This paper introduces magnetic performance of the permanent magnets, design parameters of the two CPMUs, cryogenic cooling and magnetic field of the two CPMUs and so on. When gap of the two CPMUs is about 6.0 mm, the measurement results showed that the effective magnetic field peak of CPMU18 at 300 K and 77 K was 0.82 T, 0.92T, respectively, and the magnetic field phase error is about 3 degrees and 5 degrees respectively. The effective magnetic field peak of CPMU20 at 300 K and 140 K was 0.94T and 1.03T, respectively, and the magnetic field phase error was 3 degrees and 3.5 degrees respectively.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK068 High degree circular polarization at x-ray self-seeding FELs with crossed-planar undulators 4453
 
  • K. Li, H.X. Deng, Z.F. Gao, B. Liu, D. Wang
    SINAP, Shanghai, People's Republic of China
 
  Funding: Work was supported by the National Natural Science Foundation of China (11775293), the National Key Research and Development Program of China (2016YFA0401900).
The crossed undulator configuration for a high-gain free-electron laser (FEL) is well-known for the ability of versatile polarization control. However, the degree of polarization is very sensitive to power and phase between the two stages of crossed undulators. In this poster, we introduce the generation of high degree circular polarization hard x-ray FEL with crossed-planar undulator seeded by self-seeding. The reverse taper and taper undulator technology are employed for improving its performance. With the combination of high degree (>95%) circular polarization and flexibility of polarization switching, this scheme might be useful for some scientific research in the future.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK069 Design of the Beam Switchyard of a Soft X-ray FEL User Facility in Shanghai 4456
 
  • S. Chen, H.X. Deng, C. Feng, B. Liupresenter, D. Wang, R. Wang
    SINAP, Shanghai, People's Republic of China
 
  A soft X-ray FEL user facility, which is based on the existing test facility located in the Zhangjiang Campus of SINAP, is under construction. Two undulator lines will be installed parallelly in the undulator hall and their electron beams are served by a 1.5 GeV linac. For simultaneous operation of the two undulator lines, a beam distribution system should be used to connect the linac and the undulator lines. In this paper, the physics design of this beam distribution system will be presented and also the beam dynamic issues will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK070 Optimization for the Two-Stage Hard X-Ray Self-Seeding Scheme the SCLF 4460
 
  • T. Liu, C. Feng, D. Wang, X. Wang, K.Q. Zhang
    SINAP, Shanghai, People's Republic of China
 
  Funding: Work supported by the National Natural Science Foundation of China 11475250 and 11605277, National Key Research and Development 2016YFA0401901 and Youth Innovation Promotion Association CAS 2015209.
Self-seeding mode has been demonstrated a great advantage for the achievement of a high brightness X-ray with a pure spectrum. Single-bunch self-seeding scheme with wake monochromators is adopted for the realization of the hard X-ray FEL at the Shanghai Coherent Light Facility (SCLF). Limited by the heat-loading of the monochromator, the two or multiple stages self-seeding scheme is required. In this contribution, we present a basic two-stage scheme design and optimization for the generation of the photon energy range of 3 keV to 15 keV at the line FEL-I of the SCLF. Simulation results show the peak power and pulse energy each stage, which illustrates the loaded energy required of the crystal monochromator as a pointcut of its following thermal analysis. The electron beam energy used in the study is 8 GeV and the central photon energy is 12.4 keV.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK071 Lattice Design for a 1.2 GeV Storage Ring 4464
SUSPF007   use link to see paper's listing under its alternate paper code  
 
  • S.Q. Shen, S.Q. Tian, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  It is a very effective way to bring down the emittance of storage ring by using the MBA lattice design. Based on this concept, some other solutions have been developed to reduce the emittance furthermore for recent years. In this paper, the lattice design for a 1.2 GeV storage ring will be presented. The solution of horizontal and longitudinal gradient bending magnets tried in this lattice is going to be discussed in detailed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK072 X-Band RF System as Linearizer for SXFEL 4467
 
  • J.H. Tan, W. Fang, Q. Gu, X.X. Huang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  High gradient accelerating structure is the core technology of compact linear collider facilities and compact free electron laser facilities. Meanwhile the important limitation of improving brightness in free electron laser facility is the non-linear energy spread, and the X-band accelerating structure can provide harmonic compensation in linac to linearize the bunch compression process. In this paper, a special X-band traveling-wave accelerating structure is primary designed for compact hard x-ray free electron laser facility. Then the structure is processed manufacturing, and realize high power experiment and linear bunch compression at Shanghai soft x-ray free electron laser facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK073 Multi FEL Lines with Compact Undulator Layout 4470
 
  • D. Wang
    SINAP, Shanghai, People's Republic of China
 
  Today the high repetition rate X-ray Free Electron Lasers based on superconducting radiofrequency technologies have come to their age. Such kind of facilities are able to serve many FEL photon beamlines simultaneously with each of which have large flexibilities in selecting wavelength, intensity, polarization, coherence and other properties through independent tuning of the undulator magnets. In reality the space needed to accommodate many undulator lines could be a limiting factor of user capacity, especially for the high rep rate XFELs that tend to utilize the underground tunnel to host long superconducting accelerator machines. In this paper we present a concept of compact undulator layout for more FEL lines in the precious tunnel spaces or similar environment. Shanghai Coherent Light Facility(SCLF) is a high repe-tition rate X-ray Free Electron Lasers installed in under-ground tunnels with an overall length of more than 3 km. The concept described in this paper could be applied to the SCLF or similar FEL facilities. The design and R&D progress will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK075 A Possible Scheme for Generating High-harmonic Coherent Radiation in Storage Rings 4473
SUSPF009   use link to see paper's listing under its alternate paper code  
 
  • X.F. Wang, C. Feng, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  A possible scheme for storage ring FEL which can introduce small energy dispersion and emittance simultaneously to generate intense coherent light in the storage rings is described. Based on a modified version of echo-enabled harmonic generation from free-electron lasers, the technique uses a dogleg and a wave-front tilted seed laser, one normal seed laser and two chicanes to make three-dimensional manipulation of the electron beam phase space, producing high-harmonic microbunching of a relativistic electron beam. Due to small energy dispersion and emittance growth, the storage rings do not need long damping time to recover the quality of the electron beams, so this scheme will significantly improve the performance of FELs based on rings. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in Shanghai Synchrotron Radiation Facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK076 Longitudinal Shaping for Beam-Driven Plasma Wakefield Accelerators 4477
 
  • Z. Wang, K.Q. Zhangpresenter, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
  • S. Huang, W. Lu
    TUB, Beijing, People's Republic of China
 
  The generation of high quality driven electron beam (high peak current and small beam size) is quite important for the beam-driven plasma accelerator. Besides, a linearly ramped, more exactly, the triangular current distribution is more suitable. In this paper, by adjusting the phase and the amplitude of the harmonic linearizer, the linear ramped current distribution electron beam is generated by the FEL linac. The CSR introduced emittance growth and the jitters of the electron are researched. The electron beam generated by the ramped driven beam in the plasma is researched as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK077 The Preliminary Experiment Studies for Soft X-Ray Self-Seeding System Design of SCLF Facility 4481
 
  • K.Q. Zhang, C. Feng, D. Wang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  The preliminary experiment studies for soft x-ray self-seeding system design of SCLF facility have been pre-sented in this paper. Some practical problems and pre-engineering design have been studied for the experimental prepare of soft x-ray self-seeding for the future SCLF facility. The monochromator system designs in this paper include optical structure, optical parameters and mechanical design. The designed optical system has an optical resolution of 1/10000 at the photon energy of 700-1300eV based on the optical simulation. To make the system satisfy the experimental requirements, mechanical install requirements and install precisions are also analysed. Considering the actual varies errors, the errors analyses such as the surface errors of the optical mirror and the machining errors of the VLS grating are also carried out. In conclusion, preliminary experimental studies including system design and varies engineering requirements are introduced to make sure that the presented design is reliable for final soft x-ray self-seeding experiment of SCLF facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK078 Corrugated Structure as a Linearizer in High Repetition Rate X-Ray Free Electron Laser Source 4485
 
  • Z. Wang, C. Feng, D. Huang, K.Q. Zhangpresenter, M. Zhang
    SINAP, Shanghai, People's Republic of China
 
  A feasible method is proposed to compensate the high order mode (HOM) of the RF field, linearize the bunch compression process in the high repetition rate x-ray free electron laser source. In the proposed scheme, the corrugated structure is used in the superconducting linac to linearize the longitudinal phase space of the electron beam. The results show that the peak current of the electron beam will be increased from about 1 kA to over 2 kA with the charge of 100 pC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK082 Micro Bunch Rotation and Coherent Undulator Radiation From a Kicked Beam 4489
SUSPF013   use link to see paper's listing under its alternate paper code  
 
  • J.P. MacArthur
    Stanford University, Stanford, California, USA
  • Z. Huang, J. Krzywinski, A.A. Lutman
    SLAC, Menlo Park, California, USA
 
  Recent observations of x-rays from a microbunched beam that has been kicked off-axis have shown coherent radiation at surprisingly large angles, in some cases reaching 30-50 uRad. Previous work on the topic has suggested that radiation at such large angles is inconsistent with classical radiation theory because microbunches cannot tilt. Here we show that, when kicked in a quadrupole lattice, microbunches can automatically tilt toward a new direction of propagation. This allows for coherent radiation farther off axis.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK083 Self-Modulation of a Relativistic Electron Beam in a Wiggler 4492
 
  • J.P. MacArthur
    Stanford University, Stanford, California, USA
  • J.P. Duris, Z. Huang, A. Marinelli, Z. Zhang
    SLAC, Menlo Park, California, USA
 
  Users at x-ray free-electron laser (FEL) facilities have shown strong interest in using single spike, coherent x-ray pulses to probe attosceond dynamics in atoms and molecules. Sub-femtosecond soft x-ray pulses may be obtained from an electron beam that has been modulated in a wiggler resonant with an external laser, the enhanced-SASE technique. We discuss a new way to produce this energy modulation, wherein the external laser is replaced by coherent radiation from the current spike on the tail of the electron beam. We calculate the modulation expected in a wiggler from both a single frequency perspective and a coherent synchrotron radiation (CSR) perspective.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK084 E-field Measurement of 9.3 GHz RF cavity for 6 MeV LINAC 4496
SUSPF017   use link to see paper's listing under its alternate paper code  
 
  • D.H. Ha, J.-S. Chai, M. Ghergherehchi, H.S. Kim, J.C. Lee, H. Namgoong, J.H. Seo, Shin, S.W. Shin
    SKKU, Suwon, Republic of Korea
 
  In order to achieve performance close to the design value, fabricated cavity was tuned at Sunkyunkwan university. Tuning was done in two step: each cell tuning and bead-pull system. Each cell tuning was used to determine the status of each cell and to remove the stop-band. Bead-pull system was used to measure the E-field distribution and obtain the required field flatness. This paper describes each cell measurement data and bead-pull measurement system and data.
x-band, linac, measurement
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK085 Development of a Pre-Injector Test Bench for Future SLRI Light Source 4499
 
  • K. Kittimanapun, Ch. Dhammatong, N. Juntong, W. Phacheerak, M. Phanak
    SLRI, Nakhon Ratchasima, Thailand
 
  A pre-injector test bench at the Synchrotron Light Research Institute (SLRI) is under development as one of the preparations for the future SLRI light source and of choices for the possible upgrade of the current injector. The pre-injector test bench includes a pulsed thermionic gun, a fast pulse deflector, a buncher and a pre-buncher. The thermionic electron gun with a cathode made of a single crystal CeB6 is employed as an electron emitter providing small emittance and uniform electron density. The fast pulse deflector shorten the extracted electrons of a few microseconds to that of a few nanoseconds. The electron pulses are further bunched by both the 238 MHz pre-buncher and the 476 MHz buncher to allow the 1-MeV electron beam. The experimental setups for emittance and beam profile measurements are installed on a movable diagnostic stand which is, later on, replaced by the beam bunching devices. The designs of the test bench will be discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK086 Low Intensity Electron Beam Measurement at SLRI Beam Test Facility 4502
 
  • K. Kittimanapun, N. Chanlek, A. Lakrathok, N. Laoiamnongwong
    SLRI, Nakhon Ratchasima, Thailand
 
  Funding: This work is supported by the National Science and Technology Development Agency (NSTDA) under contract FDA-C0-2558-855-TH.
The SLRI Beam Test Facility (SLRI-BTF), the latest extension of the existing accelerator complex, has recently been in operation at the Synchrotron Light Research Institute (SLRI). SLRI-BTF is capable of providing electron test beams with desired intensity and energy. By means of a wedge target downstream of the 40-MeV linac, the electron intensity of the test beam produced is variable between a few to millions of electrons per burst. The test beam energy is adjustable from 40 MeV to 1.2 GeV, depending on the acceleration time of the synchrotron booster. SLRI-BTF targets to service electron test beams to the development of the high-energy particle detectors and diagnostic instrumentations. In this paper, the measurement of the low intensity electron beam will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK087 Conceptual Design of the RF System for the Storage Ring and Linac of the New Light Source in Thailand 4505
 
  • N. Juntong, T. Chanwattana, K. Kittimanapunpresenter, T. Pulampong, P. Sunwong
    SLRI, Nakhon Ratchasima, Thailand
 
  The new light source facility in Thailand will be a ring-based light source with the circumference of approximately 300m and an electron energy of 3GeV. The target beam emittance is below 1.0 nm·rad with a maximum beam current of 300mA. The injector utilizes a full energy C-band linac with a photocathode RF electron gun. The storage ring RF system is based on a 500MHz frequency. The EU-HOM damped cavity and the new SPring-8 design TM020 cavity is the choice of the storage ring cavity. The RF power unit for storage ring can either be a high-power klystron feeding all RF cavities or a combination of low power IOTs or solid-state amplifiers feeding each cavity. The high gradient C-band structure is considered as the main accelerating structure for linac. The RF power system for linac will base on klystron and a modular modulator. Details of RF systems options for this new light source project will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK088 Low Emittance Thermionic Electron Gun at SLRI 4509
 
  • K. Kittimanapun, Ch. Dhammatong, N. Juntong, W. Phacheerak, M. Phanak
    SLRI, Nakhon Ratchasima, Thailand
 
  The Synchrotron Light Research Institute (SLRI) has developed a new thermionic electron gun producing low emittance electron beam for the future upgrade of the existing one. The thermionic cathode made of a CeB6 single crystal is selected due to its properties providing high electron beam current, uniform current density, and high resistance to contamination. In addition, the CeB6 cathode of 3 mm in diameter can produce up to a few Amperes of electron beam current. The electron gun is pulsed at 500 kV with a few microseconds wide to avoid high voltage breakdown as well as to reduce space charge effect resulting in the emittance growth of the extracted electron beam. The preliminary simulation and design of the electron gun together with the high voltage system are described in the paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK090 First RF Test Results of Two-Cavities Accelerating Cryomodule for ARIEL eLinac at TRIUMF 4512
 
  • Y. Ma, Z.T. Ang, K. Fong, J.J. Keir, D. Kishi, D. Lang, R.E. Laxdal, R.R. Nagimov, B.S. Waraich, Z.Y. Yao, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  The Advanced Rare Isotope Laboratory (ARIEL) pro-ject requires a 50 MeV, 10 mA continuous-wave (CW) electron linear accelerator (e-Linac) as a driver accelera-tor. Now the stage of the 30MeV portion of the e-Linac is under commissioning which includes an injector cry-omodule(ICM) and the 1st accelerator cryomodules (ACM1) with two cavities configuration. A single 290kW klystron is used to feed the two ACM1 cavities in vector sum closed-loop control. In this paper the initial commis-sioning results of the ACM1 RF system will be present.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK092 SOLEIL Status Report 4516
 
  • L.S. Nadolski, G. Abeillé, Y.-M. Abiven, P. Alexandre, F. Bouvet, F. Briquez, P. Brunelle, A. Buteau, N. Béchu, M.-E. Couprie, X. Delétoille, T. Didier, J.M. Dubuisson, C. Herbeaux, N. Hubert, C.A. Kitegi, M. Labat, J.-F. Lamarre, P. Lebasque, A. Lestrade, A. Loulergue, P. Marchand, O. Marcouillé, F. Marteau, A. Nadji, R. Nagaoka, P. Prigent, F. Ribeiro, K.T. Tavakoli, M.-A. Tordeux, M. Valléau
    SOLEIL, Gif-sur-Yvette, France
 
  SOLEIL is both a synchrotron light source and a research laboratory at the cutting edge of experimental techniques dedicated to matter analysis down to the atomic scale, as well as a service platform open to all scientific and industrial communities. This French 2.75 GeV third generation synchrotron light source provides today extremely stable photon beams to 29 beamlines (BLs) complementary to ESRF. We report facility performance, ongoing projects and recent major achievements. A significant work was performed in order to secure the operation of the two canted 5.5 mm in-vacuum cryogenic permanent magnet undulators (CPMUs). Major R&D areas will also be discussed, and progress towards a lattice baseline for making SOLEIL a diffraction limited storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK094 Thermal Design of a 100 kW Electron to Gamma Converter at TRIUMF 4520
 
  • B.G. Cade, L. Egoriti, A. Gottberg
    TRIUMF, Vancouver, Canada
  • D.R. Priessl
    UVIC, Victoria, Canada
 
  The electron target station (AETE) of the TRIUMF-ARIEL Facility will employ an electron "driver" beam to irradiate Isotope Separator On-Line (ISOL) targets for the production of radioactive isotopes via photofission. 30 MeV electrons will be converted to gamma spectrum Bremsstrahlung photons via an electron to gamma (e-y) converter located upstream of the ISOL target. The e-y concept uses a composite metal with two layers: One high-Z material to convert electrons to photons, and one low-Z material to provide structural support, thermal dissipation, and maximal transparency to the produced gamma photons. Several material combinations and bonding processes are currently being evaluated and tested using TRIUMF's E-LINAC. Water-cooling and thermal design are being optimized for 100 kW operation and have thus far been validated up to 10 kW driver beam power. The latest test results and future prospects are summarized.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK095 Design of an RF Modulated Thermionic Electron Source at TRIUMF 4524
 
  • K. Fong, D.W. Storey
    TRIUMF, Vancouver, Canada
 
  The electron source in the TRIUMF ARIEL project is a gridded dispenser cathode. The cathode is biased at -300kV, and the grid requires a RF control signal of up to 150V at 650 MHz. The required RF power is approximately 20 W and is provided by an RF amplifier located outside the gun vessel. This RF power is coupled into the gun circuit through a ceramic transmission line. The design of this ceramic transmission line, as well as the impedance transformation circuit which provides both the impedance matching and the dc powers to the gun assembly are described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK096 Tuners Alignment on Two 9-Cell Cavities with Single Amplifier under Self-Excited Loop 4527
 
  • K. Fong, Z.T. Ang, M.P. Laverty, Q. Zheng
    TRIUMF, Vancouver, Canada
 
  The TRIUMF eLinac ACM consists of two 9-cell cavities which are driven by a single klystron. The output power from the klystron are split by a variable power divider and send down 2 independently phase adjustable transmission lines to their respective cryomodules. The vector sum of the fields from both cryomodules is used for phase-locked self-excited loop regulation. A semi-automatic procedure to tune the 2 cyromodules to provide the correct amplitudes and phases for self-excitation as well as beam acceleration is described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK097 First Conceptual Design Studies of an Electron Source for Ultrafast Electron Diffraction at DELTA 4530
 
  • D. Krieg, S. Khan
    DELTA, Dortmund, Germany
  • K. Sokolowski-Tinten
    Universität Duisburg-Essen, Duisburg, Germany
 
  Funding: MERCUR Pr-2017-0002
Ultrafast electron diffraction (UED) is a technique to study the structural dynamics of matter, combining diffraction of electrons with sub-angstrom De-Broglie wavelength with femtosecond time resolution. The method is complementary to X-ray scattering at free-electron lasers. UED pump-probe experiments require ultrashort laser pulses to pump a sample, electron bunches with small emittance and ultrashort length to analyze the state of the sample by diffraction, as well as excellent control of the delay between them. While most UED systems are based on electrostatic electron sources in the keV regime, electrons accelerated to a few MeV in a radiofrequency photocathode gun offer significant advantages regarding emittance and bunch length due to the reduction of space charge effects. Furthermore, the longer mean free path of MeV electrons allows for thicker samples and hence a broader range of possible materials. In this paper, a first conceptual design and simulation results for a university-based UED facility with ultrashort and low-emittance MeV electron bunches are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK098 A Tunable Narrowband Source in the Sub-THz and THz Range at DELTA 4534
 
  • C. Mai, B. Büsing, S. Khan, A. Meyer auf der Heidepresenter, B. Riemann, B. Sawadski, P. Ungelenk
    DELTA, Dortmund, Germany
  • M. Brosi, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • F. Frei
    PSI, Villigen PSI, Switzerland
  • C. Gerth
    DESY, Hamburg, Germany
  • M. Laabs, N. Neumann
    TU Dresden, Dresden, Germany
  • N.M. Lockmann
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Funding: Work supported by the DFG (INST 212/236-1 FUGG), the BMBF (05K13PEC, 05K16PEB) and the state of NRW.
At DELTA, a 1.5-GeV electron storage ring operated as a synchrotron light source by the TU Dortmund University, an interaction of ultrashort laser pulses with electron bunches is used to generate broadband as well as tunable narrowband radiation in the frequency range between 75 GHz and 5.6 THz. The performance of the source was studied using two different Fourier-transform spectrometers. It was demonstrated that the source can be used for the characterization and comparison of Schottky-diode based detectors, e.g., an on-chip spectrometer enabling single-shot applications.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK099 Measurement of the Laser-Induced Energy Modulation Amplitude at the Short-Pulse Facility at DELTA 4538
 
  • A. Meyer auf der Heide, B. Büsing, S. Khan, N.M. Lockmann, C. Mai, B. Riemann, B. Sawadski
    DELTA, Dortmund, Germany
 
  The short-pulse facility at the synchrotron light source DELTA operated by the TU Dortmund University employs coherent harmonic generation (CHG) to provide ultrashort pulses in the vacuum ultraviolet and terahertz regime. Here, a laser-electron interaction results in a modulation of the electron energy which is transformed into a density modulation by a magnetic chicane. Measurements of the energy modulation amplitude with different techniques including an RF phase modulation are presented. A combination of the results allow to estimate the energy spread of the electron beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK100 Setup for Cooled GaAs Cathodes With Increased Charge Lifetime 4542
SUSPF024   use link to see paper's listing under its alternate paper code  
 
  • T. Eggert, J. Enders, M. Espig, Y. Fritzsche, N. Kurichiyanil, M. Wagner
    TU Darmstadt, Darmstadt, Germany
 
  Funding: DFG (GRK 2128) BMBF (05H15RDRB1)
GaAs photocathode lifetime is limited, and to ensure re- liable operation for high power-applications it is necessary to maximize its charge lifetime. By using a cryogenic sub- volume it is expected to improve the local vacuum condi- tions due to cryogenic adsorption of reactive residual gas molecules. Yielding an enhanced lifetime of the negative- electron-affinity surface of the cathode. Furthermore the cooling of the cathode itself ishould allow higher laser power deposition in the material. Introducing an electrostatic bend is expected to reduces the ion-backbombardment on the cath- ode surface. A dedicated set-up is being developed at the Photo-CATCH test facility in Darmstadt, Germany to measure the charac- teristics of such a cryogenic source. This contribution updates the report given at PSTP 2017.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK101 Inverted Geometry Photo-Electron Gun Research and Development at TU Darmstadt 4545
 
  • M. Herbert, J. Enders, Y. Fritzsche, N. Kurichiyanil, V. Wende
    TU Darmstadt, Darmstadt, Germany
 
  Funding: Work supported by the Deutsche Forschungsgemeinschaft through GRK 2128 'AccelencE'
The Institute for nuclear physics at TU Darmstadt houses the Superconducting Darmstadt Linear Accelerator S-DALINAC. A photo-electron gun using GaAs photocathodes to provide pulsed and/or polarized electron beams, the S-DALINAC Polarized Injector SPIn, has been installed * for future nuclear-structure investigations**. In order to conduct research and development for this source, a test facility for Photo-Cathode Activation, Test and Cleaning using atomic-Hydrogen (Photo-CATCH) has been constructed***. This setup provides several chambers for photocathode handling and a 60 keV beamline for photo-gun design studies****. Currently, an upgraded inverted insulator geometry is under investigation for Photo-CATCH that is supposed to be implemented at SPIn. We will present the current developments at Photo-CATCH and future measurements.
* Y. Poltoratska et al., J. Phys.: Conf. Series 298 (2011)
** J. Enders, AIP Conf. Proc. 1563, 223 (2013)
*** M. Espig, Diss., TU Darmstadt (2016)
**** N. Kurichiyanil, Diss., TU Darmstadt (2016)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK103 Initial Testing of Techniques for Large Scale Rf Conditioning for the Compact Linear Collider 4548
SUSPF019   use link to see paper's listing under its alternate paper code  
 
  • T.G. Lucas, M.J. Boland, P.J. Giansiracusa, R.P. Rassool, M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
  • N. Catalán Lasheras, A. Grudiev, T. Lefèvre, G. McMonagle, I. Syratchev, B.J. Woolley, W. Wuensch, V. del Pozo Romano
    CERN, Geneva, Switzerland
  • J. Paszkiewicz
    University of Oxford, Oxford, United Kingdom
  • C. Serpico
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • A. Vnuchenko
    IFIC, Valencia, Spain
  • R. Zennaro
    PSI, Villigen PSI, Switzerland
 
  Nominal operating conditions for the Compact Linear Collider (CLIC) 380 GeV requires 72 MV/m loaded accelerating gradients for a 180 ns flat-top pulse. Achieving this requires extensive RF conditioning which past tests have demonstrated can take several months per structure, when conditioned at the nominal repetition rate of 50 Hz. At CERN there are three individual X-band test stands currently operational, testing up to 6 structures concurrently. For CLIC's 380 GeV design, 28,000 accelerating structures will make up the main linac. For a large scale conditioning programme, it is important to understand the RF conditioning process and to optimise the time taken for conditioning. In this paper, we review recent X-band testing results from CERN's test stands. With these results we investigate how to optimise the conditioning process and demonstrate the feasibility of pre-conditioning the structures at a higher repetition rate before installation into the main linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK104 High Power and High Repetition Rate X-band Power Source Using Multiple Klystrons 4552
 
  • M. Volpi, M.J. Boland, P.J. Giansiracusa, T.G. Lucas, R.P. Rassool
    The University of Melbourne, Melbourne, Victoria, Australia
  • N. Catalán Lasheras, A. Grudiev, G. McMonagle, I. Syratchev, B.J. Woolley, W. Wuensch, V. del Pozo Romano
    CERN, Geneva, Switzerland
  • J. Paszkiewicz
    University of Oxford, Oxford, United Kingdom
  • C. Serpico
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • A. Vnuchenko
    IFIC, Valencia, Spain
 
  In July 2016, the first X-band test facility operating with two interwoven, 6 MW klystron pulses was commissioned at CERN. Outputting up to 46 MW after pulse compression, the new test stand allows testing of two structures concurrently with repetition rates up to 400 Hz in each line. RF commissioning of all four lines has been completed and testing of high gradient accelerating structures for the Compact Linear Collider has commenced. Operations have been ongoing for more than a year, where dedicated control algorithms have been developed to conditioning the structure and to keep the pulse compressors tuned. Significant progress has been made in understanding the conditioning of two structures that are sharing an interlock and vacuum system. The high repetition rate is already showing the significantly reduced time needed to condition accelerating structures.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK105 PERLE - Lattice Design and Beam Dynamics Studies 4556
 
  • S.A. Bogacz, D. Douglas, F.E. Hannon, A. Hutton, F. Marhauser, R.A. Rimmer, Y. Roblin, C. Tennant
    JLab, Newport News, Virginia, USA
  • D. Angal-Kalinin, J.W. McKenzie, B.L. Militsyn, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • G. Arduini, O.S. Brüning, R. Calaga, K.M. Dr. Schirm, F. Gerigk, B.J. Holzer, E. Jensen, A. Milanese, E. Montesinos, D. Pellegrini, P.A. Thonet, A. Valloni
    CERN, Geneva, Switzerland
  • S. Bousson, D. Longuevergne, G. Olivier, G. Olry
    IPN, Orsay, France
  • I. Chaikovska, W. Kaabi, A. Stocchi, C. Vallerand
    LAL, Orsay, France
  • B. Hounsell, M. Klein, U.K. Klein, P. Kostka, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • E.B. Levichev, Yu.A. Pupkov
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Work has been authored by Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177 with the U.S. Department of Energy.
PERLE (Powerful ERL for Experiments) is a novel ERL test facility, initially proposed to validate choices for a 60 GeV ERL foreseen in the design of the LHeC and the FCC-eh. Its main thrust is to probe high current, CW, multi-pass operation with superconducting cavities at 802 MHz (and perhaps testing other frequencies of interest). With very high virtual beam power (~ 10 MW), PERLE offers an opportunity for controllable study of every beam dynamic effect of interest in the next generation of ERL design; becoming a ‘stepping stone' between present state-of-art 1 MW ERLs and future 100 MW scale applications. PERLE design features Flexible Momentum Compaction lattice architecture for six vertically stacked return arcs and a high-current, 6 MeV, photo-injector. With only one pair of 4 cavity cryomodules, 400 MeV beam energy can be reached in 3 re-circulation passes, with beam currents in excess of 15 mA. The beam is decelerated in 3 consecutive passes back to the injection energy, transferring virtually stored energy back to the RF. This unique facility will serve as a test-bed for high current ERL technologies, as well as a user facility in low energy electron and photon physics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK106 Architectural Considerations for Recirculated and Energy-Recovered Hard XFEL Drivers 4560
 
  • D. Douglas, S.V. Benson, T. Powers, Y. Roblin, T. Satogata, C. Tennantpresenter
    JLab, Newport News, Virginia, USA
  • D. Angal-Kalinin, N. Thompson, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • T.K. Charles
    CERN, Geneva, Switzerland
  • R.C. York
    FRIB, East Lansing, Michigan, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
A confluence of events motivates discussion of design options for hard XFEL driver accelerators. Firstly, multiple superconducting radio-frequency (SRF) driven systems are now online (European XFEL), in construction (LCLS-II), or in design (MARIE); these provide increasing evidence of the transformational potential they offer for fundamental science with its concomitant benefits. Secondly, operation of 12 GeV CEBAF* validates use of recirculation in high energy SRF linacs. Thirdly, advances in the analysis and control of effects such as coherent synchrotron radiation (CSR) and the microbunching instability (uBI) have been recently achieved. Collectively, these developments offer insights providing extended facility science reach, reduced costs, multiplicity (i.e., support of numerous FELs operating over a range of wavelengths), and enhanced scalability and upgradability (to higher powers and energies). We will discuss the relationship amongst the various threads, and indicate how they inform design choices for the system architecture of an option for the UK-XFEL** - that of a staged multi-user X-ray FEL and nuclear physics facility based on a multi-pass recirculating SRF CW linac.
*M. Spata, "12 GeV CEBAF Initial Operations and Challenges", these proceedings.
**P. Williams et al., Proc. FLS2018, Shanghai, China (March 2018).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK107 Design of a High Charge, Low Energy, Magnetized Electron Injector 4564
 
  • F.E. Hannon
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Simulations of a magnetized injector for the bunched-beam electron cooler ring, as part of the Jefferson Lab Electron Ion Collider (JLEIC) are presented. A challenge of such an injector is in generating a magnetized, 3.2nC electron bunch at low energy and preserving the angular momentum so it can subsequently be merged into the cooler ring and transported to the cooling solenoid without degradation. The design of the proposed injector and the effect it has on the beam are discussed in detail.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK107  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK108 Production of Magnetized Electron Beam from a DC High Voltage Photogun 4567
 
  • M.A. Mamun, P.A. Adderley, J. F. Benesch, D.B. Bullard, J.R. Delayen, J.M. Grames, J. Guo, F.E. Hannonpresenter, J. Hansknecht, C. Hernandez-Garcia, R. Kazimi, G.A. Krafft, M. Poelker, R. Suleiman, M.G. Tiefenback, Y.W. Wang, S. Zhang
    JLab, Newport News, Virginia, USA
  • S.A.K. Wijethunga
    ODU, Norfolk, Virginia, USA
 
  Funding: This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC05-06OR23177
Bunched-beam electron cooling is a key feature of all proposed designs of the future electron-ion collider, and a requirement for achieving the highest promised collision luminosity. At the Jefferson Lab Electron Ion Collider (JLEIC), fast cooling of ion beams will be accomplished via so-called 'magnetized cooling' implemented using a recirculator ring that employs an energy recovery linac. In this contribution, we describe the production of magnetized electron beam using a compact 300 kV DC high voltage photogun with an inverted insulator geometry, and using alkali-antimonide photocathodes. Beam magnetization was assessed using a modest diagnostic beamline that includes YAG view screens used to measure the rotation of the electron beamlet passing through a narrow upstream aperture. Magnetization results are presented for different gun bias voltages and for different laser spot sizes at the photocathode, using 532 nm lasers with DC and RF time structure. Photocathode lifetime was measured at currents up to 4.5 mA, with and without beam magnetization.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK108  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK110 300 kV DC High Voltage Photogun with Inverted Insulator Geometry and CsK2sb Photocathode 4571
SUSPF028   use link to see paper's listing under its alternate paper code  
 
  • Y.W. Wang, P.A. Adderley, J. F. Benesch, D.B. Bullard, J.M. Grames, F.E. Hannon, J. Hansknecht, C. Hernandez-Garcia, R. Kazimi, G.A. Krafft, G.A. Krafft, M.A. Mamun, G.G. Palacios Serrano, M. Poelker, R. Suleiman, M.G. Tiefenback, S. Zhang
    JLab, Newport News, Virginia, USA
  • G.A. Krafft, S.A.K. Wijethunga
    ODU, Norfolk, Virginia, USA
 
  Funding: This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC05-06OR23177
A compact DC high voltage photogun with inverted-insulator geometry was designed, built and operated reliably at 300 kV bias voltage using alkali-antimonide photocathodes. This presentation describes key electrostatic design features of the photogun with accompanying emittance measurements obtained across the entire photocathode surface that speak to field non-uniformity within the cathode/anode gap. A summary of initial photocathode lifetime measurements at beam currents up to 4.5 mA is also presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK111 Negative Electron Affinity Gallium Arsenide Photocathodes Based on Optically Resonant Nanostructure 4575
 
  • S. Zhang, M. Poelker, M.L. Stutzman
    JLab, Newport News, Virginia, USA
  • X. Peng, J. Zou
    East China University of Science and Technology, Shanghai, People's Republic of China
 
  Funding: DOE
We report the design and fabrication of a new type of negative electron affinity (NEA) gallium arsenide (GaAs) photocathode with optically resonant nanostructures. We observed a significant enhancement of the quantum effi-ciency (QE) from the GaAs photocathode with nanowire arrays (NWA) due to the Mie resonance effect within the intended wavelength range. Theoretical calculations of the expected reflectance behaviour together with experi-mental results of optical and photoemission characteris-tics are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK111  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK112 An Updated Description of the FEL Simulation Code Puffin 4579
 
  • L.T. Campbell, B.W.J. MᶜNeil, P.T. Traczykowski
    USTRAT/SUPA, Glasgow, United Kingdom
  • L.T. Campbell
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • B.W.J. MᶜNeil
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J.D.A. Smith
    TXUK, Warrington, United Kingdom
 
  Puffin [1] is an unaveraged 3D FEL simulation tool with no Slowly Varying Envelope Approximation (SVEA), no undulator period averaging of the electron motion, and no periodic slicing of the electron beam, enabling simulation of broadband and high resolution FEL phenomena. It is a massively parallel code, written in modern Fortran and MPI, which scales from single core machines to HPC facilities. Its use in a number of projects since its initial description in 2012 has necessitated a number of additions to expand or improve its capability, including new numerical techniques, and the addition of a wide and flexible array of undulator tunings and polarizations along with electron beam optics elements for the undulator line. In the following paper, we provide an updated description of Puffin including an overview of these updates.
[1] L.T. Campbell and B.W.J. McNeil, Phys. Plasmas 19 093119 (2012)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK113 From Coherent Harmonic Generation to Steady State Microbunching 4583
SUSPF005   use link to see paper's listing under its alternate paper code  
 
  • X.J. Deng, W.-H. Huang, T. Rui, C.-X. Tang
    TUB, Beijing, People's Republic of China
  • A. Chao, D.F. Ratner
    SLAC, Menlo Park, California, USA
  • J. Feikes, M. Ries
    HZB, Berlin, Germany
  • R. Klein
    PTB, Berlin, Germany
 
  Steady state microbunching (SSMB) is an electron storage ring based scheme proposed by Ratner and Chao to generate high average power narrow band coherent radiation with wavelength ranging from THz to EUV. One key step towards opening up the potential of SSMB is the experimental proof of the SSMB principle. In this paper, the SSMB experiment planned and prepared by a recently established collaboration is presented starting from a modified coherent harmonic generation (CHG). Single particle dynamics of microbunching in an electron storage ring are analyzed. Though oriented for CHG and SSMB, some of the effects analyzed are also important in cases like bunch slicing, bunch compression, FEL beam transport lines etc, in which precise longitudinal phase space manipulations are involved. These dynamics together with some SSMB related collective effects are to be investigated on the storage ring MLS in Berlin.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK115 Optical Cavity R&D for Laser-Electron Interaction Applications 4587
SUSPF032   use link to see paper's listing under its alternate paper code  
 
  • X. Liu, W.-H. Huang, C.-X. Tang, L.X. Yan
    TUB, Beijing, People's Republic of China
  • R. Chiche, K. Dupraz, P. Favier, A. Martens, H. Monard, Z.F. Zomer
    LAL, Orsay, France
  • D. Nutarelli
    LAC, Orsay, France
 
  Laser-electron Inverse Compton Scattering X-ray source based on optical enhancement cavity is expected to produce higher-flux and better-quality X-rays than conventional sources, in addition, to become more compact, much cheaper than Free Electron Laser and Synchrotron Radiation. One X-ray source named ThomX is under construction at LAL, France. An electron storage ring with 50 MeV, 16.7 MHz electron beam will collide with a few picosecond pulsed laser to produce 1013 photons per second. A prototype cavity with a high finesse (F=25,100) in the picosecond regime is used to perform R & D for ThomX. We obtained 380 kW power stored in the optical cavity and mode instabilities were observed. The EOM-based frequency modulation to measure the finesse, the influence of dust on finesse, high-power experiments and other related issues are mentioned briefly. We will also describe the TTX2 (Tsinghua Thomson Scattering X-ray source) at Tsinghua University which is in design process. TTX2 prefers using an electron storage ring and an optical cavity in order to get high X-ray flux.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK116 NEA Surface Activation of GaAs Photocathode with CO2 4590
 
  • L.Guo. Guo
    UVSOR, Okazaki, Japan
  • H. Iijima
    Tokyo University of Science, Tokyo, Japan
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima, Japan
  • K. Uchida
    Cosylab Japan, Ibaraki, Japan
 
  NEA (negative electron affinity)-GaAs cathode is able to generate highly spin polarized electron beam more than 90%. The NEA activation is performed usually with Cs and O2 or NF3, but the exact structure of the NEA surface is not known. In this paper, we performed the NEA activation on a cleaned GaAs surface with CO2, CO, N2, and O2 gases and compared the results to improve our understanding on the NEA surface. We found that CO2 activated the cathode, but N2 and CO did not. By analyzing CO2 activation, we found that atomic oxygen activates the NEA surface and CO degrades the NEA surface simultaneously. We found that the NEA activation ability of atomic oxygen is almost a half of that of O2 molecule.*
*L. Guo, M. Kuriki, H. Iijima, K. Uchida. "NEA surface activation of GaAs photocathode with different gases", Surface Science 664C (2017) pp. 65-69.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK116  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK118 GaN Thin Film Photocathodes for High Brightness Electron Beams 4594
 
  • M. Vogel, X. Jiang, M. Schumacher
    University Siegen, Siegen, Germany
 
  Funding: This work was supported by the German Federal Ministry of Education and Research under grant 05K16PS1 "HOPE II: Hochbrillante photoinduzierte Hochfrequenz-Elektronenquellen".
Gallium nitride (GaN) is one promising candidate as photocathode material showing high quantum efficiencies which is one of the requirements for high brightness electron beams. In addition to reported quantum efficiencies of up to 70%, GaN needs to satisfy the demands for long lifetime, low dark current and low thermal emittance. In this contribution, the ongoing activities of the synthesis by means of reactive rf magnetron sputtering and characterization of GaN is presented. The latter is done by standard materials science methods and in-situ measurements of the quantum efficiency in combination with lifetime and dark current measurements to asses and optimize the photocathode's performance. Along with the project's details, first experimental results of GaN thin films synthesized utilizing a GaAs source are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK118  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK120 Hefei Advanced Light Source: A Future Soft X-Ray Diffraction-Limited Storage Ring at NSRL 4598
 
  • L. Wang, Z.H. Baipresenter, N. Hu, H.T. Li, W. Li, G. Liu, Y. Lu, Q. Luo, D.R. Xu, W. Xu, P.H. Yang, Z.H. Yang, S.C. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  To meet the fast-growing demands for high-quality low-energy photon beams, a new synchrotron radiation light source conception was brought forward several years ago by National Synchrotron Radiation Laboratory, which was named Hefei Advanced Light Source (HALS). The dominant radiation of HALS will be located in the VUV and soft X-ray region, which will be complementary with that of SSRF and HEPS. Except for high brilliance, high transverse coherence will be another signature feature of HALS. To achieve these goals, a multi-bend achromat based diffraction-limited storage ring was adopted as the main body of HALS. The general description and preliminary design of HALS will be briefly presented in this paper. Under the support of the Chinese Academy of Sciences and local government, the preliminary research and development (R&D) for HALS is undergoing. Several key technologies will be developed in the R&D project, which will lay good foundation for the construction of HALS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK120  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK121 Design of the Second Version of the HALS Storage Ring Lattice 4601
 
  • Z.H. Bai, W. Li, L. Wang, P.H. Yang, Z.H. Yang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  In this paper, a new multi-bend achromat (MBA) lat-tice concept that we recently proposed for diffraction-limited storage rings is described, where two pairs of interleaved dispersion bumps are created in each cell and also most of the nonlinear effects produced by the sextupoles located in these bumps can be cancelled out within one cell. Following this concept, two 7BA lattices have been designed for the Hefei Advanced Light Source storage ring as the second version lattic-es, one with uniform dipoles and the other with nonu-niform dipoles. The latter has a lower natural emit-tance of 23 pm·rad, in which longitudinal gradient bends and anti-bends are employed. The optimized nonlinear dynamics for these two lattices are rather good, and especially the dynamic momentum aperture can be larger than 8% without off-momentum tunes crossing non-structure half-integer resonance lines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK123 Initial Design on the High Quality Electron Beam for the Hefei Advanced Light Source 4605
 
  • R. Huang, Z.G. He, Q.K. Jia, Y. Lu, L. Wang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Work is supported by China Postdoctoral Science Foundation (Grant No. 51627901) and Chinese Universities Scientific Fund (Contract WK2310000063)
The Hefei Advanced Light Source (HALS) was proposed as a future soft X-ray diffraction-limited storage ring with a Free Electron Laser (FEL) at National Synchrotron Radiation Laboratory (NSRL). We present a design for a high brightness electron source as an injector of a 2.4 GeV linac-based diffraction limited storage ring and a free electron laser. The electron beams with low emittance and high peak current will be generated from a photoinjector and designed to fulfill the requirement of the HALS. To compress the bunch length and enhance the pulse current, velocity bunching scenario by a deceleration injection phase is designed. Owing to a linear compression, the electron beam is expected to be extremely short with a further magnetic compression.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK124 The Radiation Source for a Pre-Bunched THz Free Electron Laser 4608
 
  • R. Huang, Z.G. He, Q.K. Jia, H.T. Li, W.W. Li, Y. Lu, L. Wang, Z. Zhao
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Work is supported by National Natural Science Foundation of China (Grant No. 51627901)
Electron beam, generated in a photoinjector and bunched at terahertz (THz) frequency, will excite the coherent THz radiation when entering an undulator. We present a scheme of the radiation source for the pre-bunched THz free electron laser (FEL). The physical design of electron source is described in detail. The radiation frequency is widely tunable by both the pulse train tuning and the undulator gap tuning. It is simulation proved that the radiation power is greatly enhanced in our scheme.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK124  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK125 Development of Non-Evaporable Getter (NEG) Coatings on Small Diameter Vacuum Chambers for Diffraction-Limited Storage Ring 4611
 
  • S. Wang, Y.Z. Hong, R. Huangpresenter, X.T. Pei, Y. Wang, W. Wei, B. Zhang, S.C. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Design of the fourth generation Diffraction-Limited Storage Ring reduces aperture of vacuum chambers to a few centimeters. To satisfy the small aperture, the intense photon bombardment and the requirement of low pressure, most of the beam pipes need to be deposited with Ti-Zr-V nonevaporable getter (NEG) thin films. NEG can provide distributed pumping and low gas desorption and allow to achieve low pressure in narrow and conductance limited chambers. In this paper, Ti-Zr-V thin film was deposited by DC magnetron sputtering using Ti-Zr-V alloy target. The morphology and thickness of Ti-Zr-V are characterized by Scanning Electron Microscopy (SEM). The average grain size is evaluated using X-ray diffraction (XRD). The composition and the corresponding chemical bonding of the thin film are analyzed by X-ray Photoelectron Spectroscopy (XPS). Finally, the adhesion between the film and substrate and the vacuum performance are evaluated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK125  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK126 Numerical Method for Longitudinal Dynamics of a Terahertz Cherenkov Free Electron Laser Driven by a Mev Picosecond Electron Beam 4614
 
  • W.W. Li, Z.G. He, Q.K. Jia, S.M. Jiang, L. Wang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • D. He
    Anhui Electrical Engineering Professional Technique College, Hefei, People's Republic of China
 
  Funding: Natural Science Foundation of China (11705198, 11775216) China Postdoctoral Science Foundation (2017M622023) Fundamental Research Funds for the Central Universities (WK2310000061)
Corrugated or dielectric structures have been widely used for producing electron bunch train or THz radiation source. Recently, a novel scheme of sub-terahertz free electron laser (FEL) from a metallic pipe with corrugated walls driven by a non-ultra-relativistic (<10 MeV) picosecond electron beam was proposed and analyzed using the Vlasov-Maxwell equations. In this paper, we use the dielectric loaded waveguide instead, and a numerical method for the longitudinal beam dynamics and electromagnetics of the FEL interaction is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK126  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK127 Terahertz Smith-Purcell Radiation From the High-Harmonic Component of Modulated Electron Beam From Dielectric Structure 4617
 
  • S.M. Jiang, Z.G. He, Q.K. Jia, W.W. Li, L. Wang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • D. He
    Anhui Electrical Engineering Professional Technique College, Hefei, People's Republic of China
 
  Funding: Supported by National Nature Science Foundation of China(11705198, 11775216)
In this paper, a new radiation scheme, which adopts the high order harmonic of modulated electron beam from dielectric loaded waveguide to excite the Smith-Purcell terahertz (THz) radiation, is proposed and in-vestigated by numerical simulations. The results show that the radiation with frequency close to 1.0 THz is generated, while, the fundamental bunching frequency of electron beam is 0.28 THz. Thus, this scheme offer a new method to get the higher frequency THz radiation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK127  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK129 Lattice Tweaking Using A Tune Knob Based On Global Mechanism 4620
SUSPF008   use link to see paper's listing under its alternate paper code  
 
  • S.W. Wang, B. Li, J.L. Li, W.B. Wu, W. Xu, X. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • J.L. Li
    IHEP, Beijing, People's Republic of China
 
  The transverse tunes are important parameters for a storage ring and tune knobs are used to adjust the tunes in a specific range. Usually for large rings, a set of quadrupoles is set on the straight sections for the use of tune knob. A tune knob has been designed for the HLS-II storage ring without affecting the twiss parameters of the injection section. This paper introduces the design and online test of this tune knob. The quadrupoles are adjusted according to the simulation results and the tunes are measured and calibrated. The online test results show that the tune knob design works well on the HLS-II storage ring and can be applied for various machine studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK129  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK130 Study of Beam Instabilities with a Higher-Harmonic Cavity for the HALS 4623
 
  • Y.G. Tang, W. Li, Z.B. Sunpresenter, L. Wang, C.-F. Wu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Hefei Advanced Light Source (HALS), a diffrac-tion-limited storage ring is on the design. In HALS project, a passive higher-harmonic cavity may be added in order to increase the beam lifetime of the storage ring. When the storage ring is operated with a small momentum compaction, instabilities limit the utility of the high-er-harmonic cavity. In this paper, we run an algorithm (analytic modeling) to consider the Robinson instabilities for normal and superconducting cavity respectively. The Robinson instabilities are predicted with and without mode coupling. Coupled-bunch instability induced by resonant interaction with parasitic longitudinal mode is also considered. The analytic modeling may be used to give rf-cavity parameters that are more conducive to stability. The results show that the storage ring can oper-ate at a higher beam current and the parasitic high-er-order mode of the fundamental cavity has less impact on the beam by using superconducting harmonic cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK130  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK132 Generation of Terahertz Synchrotron Radiation Using Laser-Bunch Slicing at Hefei Light Source 4626
 
  • W. Xu, S.W. Wang, S.C. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Hefei Light Source is a second-generation low-energy synchrotron light source. The low energy machine is ca- pable of generating intense Terahertz radiation through co- herent synchrotron radiation. To realize this, one method is to shorten the bunch length to the same level of its radi- ation wavelength, e.g. by adopting low-α lattice. Another method is to modulate the electron bunch to produce mi- costructure at picosecond scale and intense Terahertz co- herent synchrotron radiation can be obtained due to the in- crease ofthebunchformfactor. This techniqueis calledthe laser bunch slicing method which introduces a laser beam into an undulator to interact with the electron bunches. In this paper we report our work on the simulation of the laser bunch slicing at Hefei Light Source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK132  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK135 Corrector Layout Optimization Using NSGA-II for HALS 4629
 
  • D.R. Xu, Z.H. Bai, L. Wang, W. Wang, H. Xu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  In this paper, we present a method to find the global optimum correctors layout based NSGA-II algorithm when the number of correctors is limited to be equal to the number of BPMs. We prove that this method works well with HALS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK135  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK138 Power Enhancement of Free-Electron Lasers Oscillators With the Natural Gradient of a Planar Undulators 4632
SUSPF012   use link to see paper's listing under its alternate paper code  
 
  • Z. Zhao, L.J. Chen, Q.K. Jia, H.T. Li
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Work supported by National Natural Science Foundation of China (No. 21327901, 11205156)
Transverse Gradient Undulator (TGU) has been proposed with the initial purpose of mitigating the gain degradation in free electron laser (FEL) oscillators driven by beams with a large energy spread. However, a special-designed TGU with a fixed transverse gradient is required to enhance the gain. In this paper, we investigate using the natural field gradient of a normal planar undulator instead of a TGU to enhance the FEL oscillator (FELO) power. In this method, the beam is first vertically dispersed by a dogleg and then the dispersed beam passes through a normal undulator with a vertical off-axis orbit. Theoretical analysis and numerical simulation based on parameters of FELiChEM are presented. It demonstrates that this scheme can enhance the FEL power with careful optimization of dispersion strength and vertical beam orbit offset, especially when the energy spread is relatively large.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK138  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK139 Design of 9/6 MeV S-band Electron Linac Structure with 1.5 Bunching Cells 4635
SUSPF015   use link to see paper's listing under its alternate paper code  
 
  • Y. Joo, P. Buaphad, H.R. Lee
    University of Science and Technology of Korea (UST), Daejeon, Republic of Korea
  • S.C. Cha, Y. Kim
    KAERI, Daejon, Republic of Korea
 
  Funding: University of Science and Technology of Korea
The Korea Atomic Energy Research Institute (KAERI) has been developing several 9/6 MeV dual energy S-band RF electron linear accelerators (linacs) for non-destructive testing such as container inspection system. Until now the bunching cell of the linac has a full-cell geometry. However, to maximize the acceleration of electrons after emission from the electron gun, the geometry of the first bunching cell is modified from a full-cell to a half-cell. The optimization of Q-factor and flatness of electric field along the linac structure can be obtained by adjusting diameters of bunching and power coupling cells. By adjusting gap of the first side-coupling cell, we can optimize the field ratio between the bunching cells and normal accelerating cells. In this paper, we describe design concepts of a 9/6 MeV linac with 1.5 bunching cells as well as optimization of RF parameters such as the quality factor, resonance frequency, and electric field distribution.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK139  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK142
Overview of Undulator Concepts for Attosecond Single-Cycle Light  
THXGBD2   use link to access more material from this paper's primary paper code  
 
  • A. Mak, V.A. Goryashko, P.M. Salen, G. K. Shamuilov
    Uppsala University, Uppsala, Sweden
  • D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • D.J. Dunning, B.W.J. MᶜNeil, N. Thompson
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J. Hebling, Z. Tibai, Gy. Tóth
    University of Pecs, Pécs, Hungary
  • Y. Kida, T. Tanaka
    RIKEN SPring-8 Center, Hyogo, Japan
  • B.W.J. MᶜNeil
    USTRAT/SUPA, Glasgow, United Kingdom
 
  Funding: Swedish Research Council (VR, 2016-04593); Stockholm-Uppsala Centre for Free-Electron Laser Research; C. F. Liljewalchs stipendiestiftelse.
The production of intense attosecond light pulses is an active area in accelerator research, motivated by the stringent demands of attosecond science: (i) short pulse duration for resolving the fast dynamics of electrons in atoms and molecules; (ii) high photon flux for probing and controlling such dynamics with high precision. While the free-electron laser (FEL) can deliver the highest brilliance amongst laboratory x-ray sources today, the pulse duration is typically 10-100 femtoseconds. A major obstacle to attaining attosecond duration is that the number of optical cycles increases with every undulator period. Hence, an FEL pulse typically contains tens or hundreds of cycles. In recent years, several novel concepts have been proposed to shift this paradigm, providing the basis for single-cycle pulses and paving the way towards high-brilliance attosecond light sources. This article gives an overview of these concepts.
 
slides icon Slides THPMK142 [1.762 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THXGBD2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK144 Lattices for a 4th-Generation Synchrotron Light Source 4639
 
  • G. K. Shamuilov
    Uppsala University, Uppsala, Sweden
 
  Inspired by the ESRF upgrade (Extremely Brilliant Source, EBS), I present some modern lattices for a medium-sized 4th-generation synchrotron radiation source. They incorporate new elements, such as anti-bend magnets. The composed lattices are optimized using a simple double-objective algorithm. Its goal is to minimize the natural emittance and absolute chromaticities simultaneously. Then, the lattices are analyzed and compared to a version of the ESRF-EBS lattice scaled down in size. The design is performed to meet the needs of the user community of the Siberian Synchrotron and Terahertz Radiation Centre under the umbrella of the Budker Institute of Nuclear Physics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK144  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK145 Evaluation of Coherent Terahertz Radiation Generated from Tilted Electron Beams Aiming for Higher Light Intensity 4642
 
  • M. Brameld, K. Sakaue, Y. Tadenuma, M. Washio, R. Yanagisawa
    Waseda University, Tokyo, Japan
  • R. Kuroda, Y. Taira
    AIST, Tsukuba, Japan
 
  Funding: This work was supported by a research granted from The Murata Science Foundation and JSPS KAKENHI 26286083.
When a target medium is irradiated by electron beams travelling at relativistic speed, terahertz(THz) radiation is produced by Cherenkov radiation. THz radiation is released at an angle to the direction of travel of the electron beams, and the coherence of the radiation can be improved by tilting the electron beams to match this angle, resulting in higher light intensity. The Cherenkov angle differs according to the refraction index of the target medium. At Waseda University, the generation of high-quality electron beams by a Cs-Te Photocathode RF-Gun and its applications are being researched. By utilizing the RF-Deflector, the tilt angle of the electron beam can be controlled to achieve coherent THz radiation. To gain higher light intensity, the use of Silicon and Aerogel as a target medium was challenged and compared to the conventional medium TOPAS. The THz radiation produced from the three target mediums were analyzed by use of the power meter and time domain spectroscopy(TDS). At this conference, the generation of THz Cherenkov radiation from different target mediums and the measurement results will be reported along with future perspectives.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK145  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK146 Enhancement of Laser-Compton X-ray by Crab Crossing 4645
 
  • Y. Koshiba, R. Morita, S. Ota, M. Washio
    Waseda University, Tokyo, Japan
  • T. Higashiguchi
    Center for Optical Research and Education, Utsunomiya University, Utsunomiya, Japan
  • K. Sakaue
    Waseda University, Waseda Institute for Advanced Study, Tokyo, Japan
  • J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: This work is supported by JSPS Research Fellowships for Young Scientists (17J04371).
We are going to apply crab crossing of electrons and laser photons for the enhancement of laser-Compton X-ray flux. Crab crossing will enable quasi-head-on collision and increase the luminosity. Therefore, it could be combined with an optical enhancement cavity without the interference of beams and cavity mirrors, leading to the generation of intense X-ray pulses. Calculation show more than fourfold luminosity will be achievable in our system, and could be larger depending on beam parameters. Although crab crossing in laser-Compton scattering has been already proposed*, it has not been demonstrated yet anywhere. This will be the proof-of-principle study of the crab crossing laser-Compton scattering. In this conference, we will report our laser system based on thin-disk technology, and results of crab crossing laser-Compton scattering.
*Variola Alessandro, et al. "Luminosity optimization schemes in Compton experiments based on Fabry-Perot optical resonators." Physical Review Special Topics-Accelerators and Beams 14.3 (2011): 031001.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK146  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK147 Measurement of Slice-Emittance of Electron Bunch Using RF Transverse Deflector 4648
 
  • T. Sasaki, Y. Nakazato, M. Washio
    Waseda University, Tokyo, Japan
  • Y. Koshiba
    RISE, Tokyo, Japan
  • K. Sakaue
    Waseda University, Waseda Institute for Advanced Study, Tokyo, Japan
 
  We have been studying a compact electron accelerator based on an S-band Cs-Te photocathode rf electron gun at Waseda University. We are applying this high quality electron beam to soft X-ray generation, coherent THz wave generation and pulse radiolysis experiment. In these applications, longitudinal parameters of the electron beam are important. Thus, we developed the RF deflecting cavity which can directly convert longitudinal distribution of the beam to transverse with high temporal resolution, and succeeded in measuring longitudinal profile of an electron beam from the RF gun. Encouraged by these successful results, we started to measure slice emittance. Slice emittance would be very useful for improving the RF electron gun cavity. Therefore, we tried to measure the slice emittance of the electron beam by applying the Q-scan method to deflected beam by RF deflecting cavity. In this conference, we will report the principle, experimental results of the slice emittance measurement, and future prospects.
C. Vaccarezza et al., "Slice emittance measurements at SPARC photoinjector with a RF deflector", Proc. of EPAC08, Genoa, Italy
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK147  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK148 Design Study on Linac-bsed Laser-cmpton Scattering X-Ray Source 4651
 
  • K. Sakaue
    Waseda University, Waseda Institute for Advanced Study, Tokyo, Japan
  • M.K. Fukuda, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • Y. Koshiba
    RISE, Tokyo, Japan
  • M. Washio
    Waseda University, Tokyo, Japan
 
  We have been developing a laser-Compton scattering X-ray source using multi-bunch linac and optical enhancement cavity. This combination have a possibility to realize a high brightness compact X-ray source. A key issue of the system is around interaction point. Compatibility of electron focusing, optical cavity and X-ray path is difficult in the current setup. Thus we propose to use rf transverse deflecting cavity for crab crossing of laser and electron. In this conference, design study of the whole laser-Compton X-ray source consist of electron linac and optical enhancement cavity will be reported. The system configuration, resulting flux and brightness, and its applications will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK148  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)