TUXGBE —  MC3 Orals   (01-May-18   09:00—10:30)
Chair: R.W. Assmann, DESY, Hamburg, Germany
Paper Title Page
TUXGBE1 Status and Prospects for the AWAKE Experiment 595
 
  • M. Turner
    CERN, Geneva, Switzerland
 
  The AWAKE Collaboration is pursuing a demonstration of proton-driven plasma wakefield acceleration of electrons. The AWAKE experiment uses a §I{400}{GeV/c} proton bunch from the CERN SPS, with a rms bunch length of 6-§I{15}{cm}, to drive wakefields in a §I10{m} long rubidium plasma with an electron density of 1014-1015cm-3. Since the drive bunch length is much longer than the plasma wavelength (λpe<§I{3}{mm}) for these plasma densities, AWAKE performed experiments to prove that the long proton bunch self-modulates in the plasma (2017). The next step is to demonstrate acceleration of electrons in the wakefields driven by the self-modulated bunch (2018). We summarize the concept of the self-modulation measurements and describe the plans and challenges for the electron acceleration experiments.  
slides icon Slides TUXGBE1 [8.883 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUXGBE1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXGBE2 Study of Ultra-High Gradient Acceleration in Carbon Nanotube Arrays 599
 
  • J. Resta-López, A.S. Alexandrova, V. Rodin, Y. Wei, C.P. Welsch, G.X. Xia
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • Y. M. Li, Y. Zhao
    UMAN, Manchester, United Kingdom
 
  Solid-state based wakefield acceleration of charged particles was previously proposed to obtain extremely high gradients on the order of 1 − 10 TeV/m. In recent years the possibility of using either metallic or carbon nanotube structures is attracting new attention. The use of carbon nanotubes would allow us to accelerate and channel particles overcoming many of the limitations of using natural crystals, e.g. channeling aperture restrictions and thermal-mechanical robustness issues. In this paper, we propose a potential proof of concept experiment using carbon nanotube arrays, assuming the beam parameters and conditions of accelerator facilities already available, such as CLEAR at CERN and CLARA at Daresbury. The acceleration performance of carbon nanotube arrays is investigated by using a 2D Particle-In-Cell (PIC) model based on a multi-hollow plasma. Optimum experimental beam parameters and system layout are discussed.  
slides icon Slides TUXGBE2 [27.296 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUXGBE2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXGBE3 Status of Plasma-Based Experiments at the SPARC_LAB Test Facility 603
 
  • E. Chiadroni, D. Alesini, M.P. Anania, M. Bellaveglia, A. Biagioni, F.G. Bisesto, E. Brentegani, F. Cardelli, G. Costa, M. Croia, D. Di Giovenale, G. Di Pirro, M. Ferrario, F. Filippi, A. Gallo, A. Giribono, A. Marocchino, L. Piersanti, R. Pompili, S. Romeo, J. Scifo, V. Shpakov, A. Stella, C. Vaccarezza, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    INFN-Roma II, Roma, Italy
  • M. Marongiu, A. Mostacci
    Sapienza University of Rome, Rome, Italy
  • J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • A.R. Rossi
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
 
  The current activity of the SPARC LAB test-facility is focused on the realization of plasma-based acceleration experiments with the aim to provide accelerating field of the order of several GV/m while maintaining the overall quality (in terms of energy spread and emittance) of the accelerated electron bunch. The current status of such an activity is presented, together with results related to the applicability of plasmas as focusing lenses in view of a complete plasma-based focusing, accelerating and extraction system.  
slides icon Slides TUXGBE3 [10.262 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUXGBE3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXGBE4 Beam Quality Limitations of Plasma-Based Accelerators 607
 
  • A. Ferran Pousa, R.W. Aßmann
    DESY, Hamburg, Germany
  • A. Martinez de la Ossa
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Plasma-based accelerators are a promising novel technology that could significantly reduce the size and cost of future accelerator facilities. However, the typical quality and stability of the produced beams is still inferior to the requirements of Free Electron Lasers (FELs) and other applications. We present here our recent work in understanding the limitations of this type of accelerators, particularly on the energy spread and bunch length, and possible mitigating measures for future applications, like the plasma-based FEL in the EuPRAXIA design study.  
slides icon Slides TUXGBE4 [4.910 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUXGBE4  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)