HIGH-GRADIENT PERFORMANCE OF X-BAND CHOKE-MODE STRUCTURES

Xiaowei Wu†, Jiaru Shi, Hao Zha, Huaibi Chen, Dezhi Cao
Department of Engineering Physics, Tsinghua University, Beijing CN-100084, China
Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Beijing CN-100084, China
Tetsuo Abe, Toshiyasu Higo, Shuji Matsumoto
KEK, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan

Abstract

The choke-mode accelerating structure is one of the higher-order-mode (HOM) damping structures. It has the advantage of relatively simple fabrication and low surface magnetic field. C-band choke-mode accelerating structures have been successfully applied in multibunch XFEL. However, the X-band choke-mode study remains in the theoretical design stage. The high-gradient performance of the choke is still unknown. Five different single-cell choke-mode accelerating structures were designed, fabricated and high-gradient tested to study the related RF breakdown characteristics. It was observed that high electric field and small choke dimension caused serious breakdowns in the choke which was the main limitation of the high-gradient performance. The Choke-mode accelerating structures reached 130 MV/m by decreasing the electric field and increasing the choke gap. A new quantity was proposed to give the high-gradient performance limitation of choke-mode accelerating structures due to RF breakdown. The new quantity was obtained from the summary of the high-gradient experiments and could be used to guide high-gradient choke-mode accelerating structure design.

INTRODUCTION

As one of the HOM damping structures, choke-mode accelerating structure has the advantage of relatively simple fabrication and low surface magnetic field. However, the high-gradient performance of the X-band choke is still unknown. Four different single-cell choke-mode accelerating structures and one reference structure were designed, fabricated, assembled, and tuned by Tsinghua University [1]. The high-gradient test, aiming at studying the high-gradient properties of X-band choke-mode structure, were conducted in New X-band Test Facility (Nextef) at KEK [2]. The high-gradient performance of different chokes were compared to study how choke dimension affect the breakdown phenomenon in the structure. A new quantity was proposed to give the high-gradient performance limitation of choke-mode accelerating structures due to RF breakdown.

HIGH-GRADIENT PERFORMANCE

The summary of the conditioning history of the single-cell structures is shown in Fig. 2. The green, red, blue, cyan, and magenta points represent the accelerating gradient (E_{acc}) of THU-REF, THU-CHK-D1.26-G1.68, THU-CHK-D1.26-G2.1, THU-CHK-D1.89-G2.1, THU-CHK-D2.21-G2.1, and THU-REF. Information of the maximum gradient obtained in the test was shown in Table 2. E_{choke} is the maximum surface electric field in the choke area. E_{surf} is the maximum surface electric field. THU-REF reached a highest accelerating...
Table 1: Information of the Choke-Mode Structures

<table>
<thead>
<tr>
<th>THU-</th>
<th>d23 [mm]</th>
<th>d1 [mm]</th>
<th>RE</th>
<th>Rp [MV/(m √MW)]</th>
<th>Q0</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>-</td>
<td>-</td>
<td>2.05</td>
<td>130</td>
<td>9010</td>
</tr>
<tr>
<td>CHK-D1.26-G1.68</td>
<td>1.26</td>
<td>1.68</td>
<td>2.10</td>
<td>109</td>
<td>7519</td>
</tr>
<tr>
<td>CHK-D1.26-G2.1</td>
<td>1.26</td>
<td>2.10</td>
<td>2.05</td>
<td>104</td>
<td>7247</td>
</tr>
<tr>
<td>CHK-D1.89-G2.1</td>
<td>1.89</td>
<td>2.10</td>
<td>2.04</td>
<td>110</td>
<td>8006</td>
</tr>
<tr>
<td>CHK-D2.21-G2.1</td>
<td>2.21</td>
<td>2.10</td>
<td>2.06</td>
<td>112</td>
<td>8210</td>
</tr>
</tbody>
</table>

A gradient of 145 MV/m which validated Tsinghua X-band single-cell structure manufacturing technology. Both THU-CHK-D1.89-G2.1 and THU-CHK-D2.21-G2.1 reached over 100 MV/m in a short time. These two structures’ high-gradient performances were better than the structures with the choke gap of 1.26 mm (THU-CHK-D1.26-G1.68 and THU-CHK-D1.26-G2.1). This revealed that breakdown rate can be reduced by increasing the choke gap size and decreasing the electric field in the choke area.

NEW QUANTITY OF CHOKE

Breakdown rate measurements were conducted in the final stage of the high-gradient tests for each structure as shown in Table 3. Breakdown rate (BDR) is strongly dependent on \(E_{\text{acc}}\) and rf pulse width. The dependencies that have been observed in many CLIC prototype structures are reported in [5,6] and can be approximated with the following relation:

\[
\text{BDR} = \frac{E_{\text{acc}}}{\tau^{30}} \times \tau^{5} = \text{constant} .
\]

Then we can define normalized accelerating gradient (G) as below:

\[
G = \frac{E_{\text{acc}}}{\text{BDR}^{1/30}} \times \tau^{1/6} .
\]

G represents the high-gradient performance of the accelerating structure during the stable operation stage. G depends on both \(E_{\text{choke}}/E_{\text{surf}}\) and choke dimension (d23). A new quantity named CHK was proposed to as shown below:

\[
G = \left(\frac{E_{\text{choke}}}{E_{\text{surf}}} \right)^{\alpha} \times d23^{\beta} \times \gamma .
\]

We can fit \(\alpha\), \(\beta\), and \(\gamma\) in Eq. (4) by applying the high-gradient test results. Fitting results indicated that \(\alpha = -0.83\), \(\beta = -0.61\), and \(\gamma = 339\):

\[
G = \left(\frac{E_{\text{choke}}}{E_{\text{surf}}} \right)^{-0.83} \times d23^{-0.61} \times 339 .
\]

Fitting results were shown in Fig. 3. The new quantity named CHK could be used to guide high-gradient choke-mode accelerating structure design.

CONCLUSION

Four different single-cell choke-mode accelerating structures and one reference structure were designed, fabricated, and high-gradient tested to study the related RF breakdown characteristics. High electric field and small choke dimension would cause serious breakdowns in the choke. It was the main limitation of the high-gradient performance. THU-CHK-D2.21-G2.1 reached 130 MV/m by decreasing the electric field and increasing the choke gap size. A new quantity was proposed to give the high-gradient performance limit of choke-mode accelerating structures due to RF breakdown. It could be used to guide high-gradient choke-mode accelerating structure design.
Table 2: Choke High-Gradient Performance Comparison

<table>
<thead>
<tr>
<th>THU-CHK</th>
<th>E_{acc}^{max} [MV/m]</th>
<th>E_{choke}^{max} [MV/m]</th>
<th>E_{choke}/E_{surf}</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1.26-G1.68</td>
<td>85</td>
<td>134</td>
<td>0.76</td>
</tr>
<tr>
<td>D1.26-G2.1</td>
<td>71</td>
<td>135</td>
<td>0.92</td>
</tr>
<tr>
<td>D1.89-G2.1</td>
<td>117</td>
<td>175</td>
<td>0.73</td>
</tr>
<tr>
<td>D2.21-G2.1</td>
<td>131</td>
<td>185</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Table 3: Breakdown Rate Measurements of the Single-Cell Structures

<table>
<thead>
<tr>
<th>THU-CHK</th>
<th>E_{acc} [MV/m]</th>
<th>Number of pulses</th>
<th>Number of breakdowns</th>
<th>Pulse width [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1.26-G1.68</td>
<td>77.3</td>
<td>8.93×10^5</td>
<td>2</td>
<td>300</td>
</tr>
<tr>
<td>D1.26-G2.1</td>
<td>67.1</td>
<td>4.19×10^6</td>
<td>16</td>
<td>300</td>
</tr>
<tr>
<td>D1.89-G2.1</td>
<td>105</td>
<td>6.14×10^5</td>
<td>3</td>
<td>350</td>
</tr>
<tr>
<td>D2.21-G2.1</td>
<td>121</td>
<td>2.17×10^6</td>
<td>15</td>
<td>350</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENT

This work was supported by the National Natural Science Foundation of China (Grant No. 11135004). The experimental program had also been supported as one of the collaborations of the CLIC under the agreement between Tsinghua University and CLIC and that between KEK and CERN (ICA-JP-0103). The authors thank the KEK electron-positron injector group for supporting the long-term operation.

REFERENCES