MULTIPACTOR DISCHARGE IN SUPERCONDUCTING ACCELERATING CH CAVITIES*

M. Gusarova1†, D. Kiselev, MEPhI, National Research Nuclear University, 115409 Moscow, Russia
M. Miski-Oglu, T. Kuerzeder, F. Dziuba, HIM Helmholtz Institute Mainz, 55099 Mainz, Germany
1also Joint Institute for Nuclear Research, Dubna, Russia

Abstract
The results of numerical simulations of multipacting discharge in a superconducting accelerating Crossbar H-type (CH) cavity are presented in this paper. The localization of multipactor trajectories in the 15-gap 217 MHz superconducting (sc) CH cavity at various levels of accelerating voltage is considered.

INTRODUCTION
The goal of the ongoing UNILAC (UNIversal Linear ACcelerator) upgrade program at GSI is to provide high intensity heavy ion and proton beams [1-5] for the Facility of Antiproton and Ion Research at Darmstadt (FAIR) [6]. Due to the low duty factor requirements for FAIR injector operation, a use of the UNILAC for super heavy element (SHE) research at GSI will be strongly limited. A dedicated standalone superconducting (sc) continuous wave (cw) linac HELIAC (HElmholtz Linear ACcelerator) is assumed to meet the demands of the experimental program [7]. The first RF test of a sc CH cavity was performed at Goethe University Frankfurt in a vertical cryostat [8]. After final assembly of the helium vessel and further High Pressure Rinsing (HPR) the RF test in a horizontal cryostat [9] at GSI was carried out. Subsequently, in summer 2017 the cavity was successfully commissioned with beam [10] at GSI. During RF tests, the cavity was operated as a generator driven resonator directed by an RF control system. Fig. 1 shows the 3D model of the superconducting (sc) 15-gap CH cavity for the (cw) linac HELIAC.

![3D model of the sc 217 MHz CH cavity.](image)

All multipacting barriers up to 4 MV/m could be permanently surmounted [8, 9], but during testing at low field levels stable and inevitable levels of a multipactor discharge were detected. This paper investigates the location and possible expansion of the multipactor discharge at different field values.

WIDE RANGE VOLTAGE SCAN
For the investigation of multipacting discharge effects the MulP-M code [11], developed at MEPhI, has been used. The electromagnetic field is exported from the CST studio [12]. The calculations have been carried out for a wide range of RF-voltage and RF-phase.

The voltage amplitudes \(U_N\) are normalized to the unit voltage value of \(U = \int E_z dz = 2.8 \text{ MV}\), integrated at 1 J stored energy inside the cavity, i.e. \(U_N = 1\) corresponds to \(U = 2.8 \text{ MV}\).

In order to identify the most dangerous multipacting levels, the simulations were performed with different steps of \(U_N\): over a wide \(U_N\) range from 0 to 5 with the rough step width of 0.2 (RF phase step is 6°), in the range \(U_N = 0 - 1\) with steps of 0.04 (RF phase step is 36°) and for \(U_N = 0 - 0.01\) with steps of 0.0004 (RF phase step is 6°). The calculations take the RF-phase, at which an electron hit the surface, into account. Fig. 2(a) shows the number of surviving electrons versus the RF voltage. Here the electrons from all initial RF phases (but the same voltage level) are summed up. The calculation time was limited to 10 RF periods.

![Number of surviving electrons versus voltage level after 10 RF periods.](image)

This is a preprint — the final version is published with IOP © 2018. Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

* Work supported by FAIR-Russia Research Center (FRRC)
† MAGusarova@mephi.ru

2800

07 Accelerator Technology
T07 Superconducting RF
for $U_N = 0 - 5$ with a step width of 0.2; (c) diagram RF phase / U_N for $U_N = 0 - 1$ with a step width of 0.04.

Fig. 2(b) shows the diagram RF phase / U_N. For each pair of RF phase and U_N, the code tracks the trajectories of 100 electrons randomly distributed over the structure. Cavity length is 0.8m. Each square in Fig. 2(b) and Fig. 2(c) corresponds to the voltage level and RF phase electron collision at which multipactor trajectories are detected. As soon as an electron with an energy for which Secondary Emission Yield SEY > 1 (used SEY for baked 300° Nb [13], SEY > 1 when the electron has an energy between 50 and 1500 eV) hits the wall for the first time, the counter function starts an account of trajectories. A secondary electron is generated and traced until either 10 RF periods are reached, or the number of hits with the surface reach a limit of impacts (n=5). For the calculation it is assumed, that the initial energy of the secondary electrons is zero and the direction of the emission is normal to the surface. The red colour denotes the regions with the largest number of surviving electrons, and the blue colour the less populated region. The graphs in Fig. 2 illustrate the existence of trajectories persisting more than 10 RF periods.

Two groups of trajectories could be recognized in Fig 2b: region I and II. The visual inspection of the corresponding electron trajectories, calculated at different voltage levels, shows at low voltage levels a concentration of the trajectories in the area of tuning elements and cross bars (region I Fig. 2b and Fig. 2c). Fig. 3 illustrates some examples of trajectories at $U_N = 0.042$ and $U_N = 0.208$. Red color indicates the trajectory of the primary electron, the blue of the first knocked out, the subsequent green.

Two types of trajectories were identified: fast damped one-point multipactor trajectories (see Fig. 4a and Fig. 4c) and slowly damped two-point multipactor trajectories (see Fig. 4b). Along the trajectory an electron gains energy within the first RF periods (up to 200 -1200 eV). The electrons on fast damped one-point multipactor trajectories within 3-10 RF periods lose their initial energy which drops to less than 20 eV. For slowly damped two-point multipactor trajectories the electron’s energy drops down within 30-40 RF periods.

Figure 5 shows the number of secondary electrons as function of U_N for 50 and 100 RF periods. One can recognize, that slowly damped trajectories are mainly concentrated at low voltages ($U_N < 0.5$).
LOW VOLTAGE RANGE

The low voltage range was considered separately. The calculations have been performed for U_N in a range from 0 to 0.01 with steps of 0.0004. Fig. 6 shows the RF phase ϕ / U_N diagram, were no trajectory below $U_N < 0.003$ is found. Visual inspections of trajectories show, that they are localized between drift tubes. Fig. 7 shows exemplary trajectories at different low voltage levels. The trajectories are damped and correspond to two point multipacting trajectories. The trajectories are damped about from 10 to 40 RF periods but the electron can gain energy up to 250 – 450 eV close to the maximum of the SEY emission for Nb [13] which can be the cause of the difficult suppression of the multipactor at these levels.

CONCLUSION AND OUTLOOK

Critical regions of multipactor avalanches at different levels of the accelerating voltage are identified. It is shown, that the trajectories in the entire range of accelerating voltages decay, but the decay rate is different. A detailed comparison with experimental results is planned for the future. Data on the location of multipactor trajectories in sc CH structures at different voltage levels will be taken into account for the development of short spoke structures for the HELIAC [14, 15]. This re-buncher cavity has a narrow and long gap and can be used for other projects applying sc cavities [16-22].

REFERENCES

This is a preprint — the final version is published with IOP

