RECENT PROGRESS OF SHORT PULSE DIELECTRIC TWO-BEAM ACCELERATION

JIAHANG SHAO

On behalf of the Argonne Wakefield Accelerator (AWA) facility
BACKGROUND AND MOTIVATION

- **Short pulse two-beam acceleration**
 - Approach to structure-based wakefield acceleration
 - High gradient acceleration (200-300 MV/m)

- Both structures can be optimized to obtain high power generation, high gradient acceleration, and high efficiency

A promising solution!

\[E_0 = \sqrt{2\alpha Z_{eff} P_{in}} \] ~GW

\[BDR \propto E^{30} \tau^5 \] ~20 ns

BACKGROUND AND MOTIVATION

- **Dielectric structure**
 - Slow-wave structure with simple geometry

- **Advantages**
 - Simple geometry
 - Small transverse size
 - No surface electric field enhancement
 - High group velocity: short pulse preferred

BACKGROUND AND MOTIVATION

- **Argonne Flexible Linear Collider (AFLC)**
 - A 3 TeV 30 MW machine based on short-pulse dielectric TBA

 ![Diagram of AFLC](image)

 - **Uniqueness**
 - High frequency (26 GHz), short rf pulse (~20 ns), high gradient (267 MV/m)
 - Modular design for flexible energy upgrade

BACKGROUND AND MOTIVATION

- **Argonne Wakefield Accelerator (AWA) facility**
 - A flexible, state-of-art testbed for future linear colliders

Breakdown test-stand
- Double emittance exchange (DEEX)
- Argonne cathode test-stand (ACT)

Wakefield experimental area
- Witness beam
 - 15 MeV, single bunch
 - 0.05-60 nC
- Drive beam
 - 70 MeV, up to 32 bunches
 - Max charge: 100 nC (single)
 - 600 nC (train)
BACKGROUND AND MOTIVATION

- **Argonne Wakefield Accelerator (AWA) facility**
 - Strong capability in research related to wakefield acceleration
 - **Over 15** collaborators and users

 D. Wang, et al., PRL 2016
 E. Simakov, et al., PRL 2016
 H. Zha, et al., PRAB 2016
BACKGROUND AND MOTIVATION

- **Argonne Wakefield Accelerator (AWA) facility**
 - Strong capability in research related to wakefield acceleration
 - **Over 15** collaborators and users

 ![Diagram with boxes and arrows]

 drive → Collinear
 drive+witness → TBA

 C. Jing, et al., to be published
BACKGROUND AND MOTIVATION

- **Argonne Wakefield Accelerator (AWA) facility**
 - Strong capability in research related to wakefield acceleration
 - **Over 15** collaborators and users

<table>
<thead>
<tr>
<th>Drive</th>
<th>Collinear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive+Witness</td>
<td>TBA</td>
</tr>
<tr>
<td>Drive+EEX</td>
<td>Bunch shaping Collinear</td>
</tr>
</tbody>
</table>

Q. Gao, et al., PRL 2018
G.Ha, et al., PRL 2017
A. Halavanau, et al., PRAB 2017
G.Ha, et al., PRAB 2016
BACKGROUND AND MOTIVATION

- **Argonne Wakefield Accelerator (AWA) facility**
 - Strong capability in research related to wakefield acceleration
 - **Over 15** collaborators and users

<table>
<thead>
<tr>
<th>drive</th>
<th>Collinear</th>
</tr>
</thead>
<tbody>
<tr>
<td>drive+witness</td>
<td>TBA</td>
</tr>
<tr>
<td>drive+EEX</td>
<td>Bunch shaping Collinear</td>
</tr>
<tr>
<td>drive+EEX</td>
<td>Plasma Wakefield</td>
</tr>
</tbody>
</table>

Under investigation
BACKGROUND AND MOTIVATION

- **Argonne Wakefield Accelerator (AWA) facility**
 - Strong capability in research related to wakefield acceleration
 - **Over 15** collaborators and users

 - Drive
 - Drive+witness
 - Drive+EEX
 - Drive+EEX
 - Drive+EEX+witness
 - Collinear
 - TBA
 - Bunch shaping Collinear
 - Plasma Wakefield
 - Bunch shaping TBA

 Under investigation
BACKGROUND AND MOTIVATION

- **Argonne Wakefield Accelerator (AWA) facility**
 - Strong capability in research related to wakefield acceleration
 - **Over 15** collaborators and users

J. Shao, et al., PRL 2016
J. Shao, et al., PRL 2015
S. Baryshev, et al., APL 2014
BACKGROUND AND MOTIVATION

- **Argonne Wakefield Accelerator (AWA) facility**
 - Strong capability in research related to wakefield acceleration
 - **Over 15** collaborators and users

- **Wakefield R&D**
 - Successful tests with metallic structures: **300 MW + 150 MeV/m** for single stage, **70 MeV/m** for two stages
 - Continuous effort in developing dielectric structures

C. Jing, et al, *To be published*
SHORT PULSE DIELECTRIC TBA IN K-BAND
-- A PROTOTYPE IN AFLC
STRUCTURE OVERVIEW

- Prototypes for the basic TBA pair in AFLC

<table>
<thead>
<tr>
<th></th>
<th>POWER EXTRACTOR</th>
<th>ACCELERATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (GHz)</td>
<td>26 (20 x 1.3)</td>
<td>26 (20 x 1.3)</td>
</tr>
<tr>
<td>ID / OD (mm)</td>
<td>7 / 9.068</td>
<td>3 / 5.026</td>
</tr>
<tr>
<td>Dielectric constant</td>
<td>6.64 (Frosterite)</td>
<td>9.8 (Alumina)</td>
</tr>
<tr>
<td>Cu coating</td>
<td>No</td>
<td>Yes, 100 µm</td>
</tr>
<tr>
<td>Group velocity</td>
<td>0.25 c</td>
<td>0.1115 c</td>
</tr>
<tr>
<td>r/Q (Ω/m)</td>
<td>9788</td>
<td>21983</td>
</tr>
<tr>
<td>Q</td>
<td>2950</td>
<td>2295</td>
</tr>
<tr>
<td>r (MΩ/m)</td>
<td>28.9</td>
<td>50.5</td>
</tr>
</tbody>
</table>

J. Shao, et al., in Proc. IPAC’2017, 3305-3307, 2017
HIGH POWER GENERATION

- **2009**: low charge
 - Low charge 16-bunch train, 2 MW generated power

- **2016-2017**: high charge
 - High charge 4-bunch train, **55 MW** generated power

Higher attenuation and surface damage
Mechanism under investigation
MAIN BEAM ACCELERATION

- Successful demonstration of short pulse dielectric TBA
 - 1.8 MeV acceleration, 28 MeV/m average gradient

- Structure inspection
 - No structure damage was observed after the high power test
SHORT PULSE HIGH POWER GENERATION IN X-BAND
-- BEYOND 100 MW
STRUCTURE OVERVIEW

- **A X-band Structure to obtain high power at AWA**
 - Large iris: ensure good transmission with high charge, minimize damage from beam irradiation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (GHz)</td>
<td>11.7 (9 x 1.3)</td>
</tr>
<tr>
<td>ID / OD (mm)</td>
<td>14.99 / 18.79</td>
</tr>
<tr>
<td>Dielectric constant</td>
<td>9.8 (Alumina)</td>
</tr>
<tr>
<td>Cu coating</td>
<td>Yes, 1 μm</td>
</tr>
<tr>
<td>Group velocity</td>
<td>0.1959 c</td>
</tr>
<tr>
<td>r/Q (Ω/m)</td>
<td>4320</td>
</tr>
<tr>
<td>Q</td>
<td>3392</td>
</tr>
</tbody>
</table>

J. Shao et al., in *Proc. IPAC’2018, TUPML007, 2018*
HIGH POWER TEST

- **Low charge**
 - Perfect agreement between simulation and measurement

\[\sqrt{P} = \sqrt{\frac{\omega r}{4 Q v g} \frac{F}{1 - \beta_g} Q_b} \]

- **High charge**
 - **90 MW** for 4-bunch train, **105 MW** for 8-bunch train
STRUCTURE COATING DAMAGE

- Sign of structure damage during high power test
 - Gradual degrading performance

- Structure inspection
 - Transmission drops from -2.5 dB (before) to -32.5 dB (after)
 - **Dielectric survive**, severe damage to the thin copper coating
STRUCTURE COATING DAMAGE

- **Sign of structure damage during high power test**
 - Gradual degrading performance

- **Structure inspection**
 - Transmission drops from -2.5 dB (before) to -32.5 dB (after)
 - **Dielectric survive**, severe damage to the thin copper coating

Thick copper coating (>100 μm) is critical for dielectric structures!
DIELECTRIC DISK ACCELERATOR -- EFFICIENCY IMPROVEMENT
Structure Overview

<table>
<thead>
<tr>
<th></th>
<th>DLA</th>
<th>DDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (GHz)</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>ID (mm)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Dielectric constant</td>
<td>9.8</td>
<td>50</td>
</tr>
<tr>
<td>Dielectric loss tangent</td>
<td>1×10^{-4}</td>
<td>5×10^{-4}</td>
</tr>
<tr>
<td>Group velocity</td>
<td>0.11 c</td>
<td>0.16 c</td>
</tr>
<tr>
<td>r/Q (kΩ/m)</td>
<td>21.8</td>
<td>32.5</td>
</tr>
<tr>
<td>Q</td>
<td>2295</td>
<td>6430</td>
</tr>
<tr>
<td>r (MΩ/m)</td>
<td>50.0</td>
<td>208.8</td>
</tr>
<tr>
<td>Input power (GW)</td>
<td>1.22</td>
<td>0.96</td>
</tr>
<tr>
<td>$\eta_{rf\text{-beam}}$ (%)</td>
<td>~9</td>
<td>~13</td>
</tr>
<tr>
<td>E_{max} (MV/m)</td>
<td>365</td>
<td>660</td>
</tr>
<tr>
<td>Beam loading (%)</td>
<td>15.5</td>
<td>17.1</td>
</tr>
</tbody>
</table>

- Advantages of (DDA) over (DLA) for short pulse TBA
 - High efficiency (~45% improvement with $2\pi/3$ mode)
 - Easier machining and tuning for high frequency and constant gradient

J. Shao et al., in *Proc. IPAC’2018, TUPML005*, 2018
ONGOING RESEARCH

- **PETS driven X-band prototype**
 - Test brazing between dielectric and copper
 - Demonstrate machining and tuning
 - High power test to reach ultra-high surface field (nosecone for 600 MV/m)
AFLC EFFICIENCY MAP

\[\eta_{\text{AC-beam}} = 9.4\% \]

297 MW

\[\eta_{\text{Lband rf}} = 55\% \]

klystrons

\[\eta_{\text{Lband rf - drive}} = 86\% \]

Drive beam

\[\eta_{\text{drive - Kband rf}} = 77\% \]

DPETS

\[\eta_{\text{waveguide}} = 95\% \]

Main linac

\[\eta_{\text{rf-main}} = 27\% \]

Drive beam dumps

Main beam

27.8 MW

Only rf power is taken into consideration
AFLC EFFICIENCY MAP

η_{AC-beam} = 9.4\% \quad \rightarrow \quad 13.4\%

297 MW \quad \rightarrow \quad 207 MW

AC power

- η_{AC - L\text{band rf}} = 55\%
- η_{L\text{band rf - drive}} = 86\%

klystrons

Drive beam

- η_{drive - K\text{band rf}} = 77\%

DPETS

- η_{waveguide} = 95\%

Main linac

- η_{rf-main} = 27\% \quad \rightarrow \quad 39\%

Main beam

DDA

Only rf power is taken into consideration
AFLC EFFICIENCY MAP

$\eta_{AC-beam} = 9.4\%$

297 MW → 13.4% → 207 MW → 20.1% → 138 MW

- AC power
- $\eta_{AC-Lband\;rf} = 55\%$
- Klystrons

- Lband rf - drive $= 86\%$
- Drive beam

- $\eta_{drive-Kband\;rf} = 77\%$
- DPETS

- Waveguide $= 95\%$
- Main linac

- $\eta_{rf-main} = 27\%$ → 39% → 58% → 27.8 MW
- Drive beam dumps

- Main beam + Main beam shaping

Only rf power is taken into consideration
AGNL EFFICIENCY MAP

AC power

- $\eta_{AC\text{-}beam} = 9.4\%$
- $\eta_{AC\text{-}L\text{band rf}} = 55\%$
- $\eta_{L\text{band rf\text{-}drive}} = 86\%$
- $\eta_{\text{drive - Kband rf}} = 77\%$
- $\eta_{\text{waveguide}} = 95\%$
- $\eta_{\text{rf\text{-}main}} = 27\%$

Drive beam

- 297 MW
- 207 MW
- 138 MW
- 84 MW

DDA

- + Main beam shaping
- + High efficiency klystron

Main linac

- Drive beam dumps
- 27.8 MW

Only rf power is taken into consideration
SUMMARY

- **Short pulse dielectric TBA**
 - A promising candidate which may meet the requirements of high gradient, high efficiency, and low fabrication cost of a future linear collider

- **Short pulse dielectric TBA at AWA**
 - K-band: 55 MW generated power, 28 MeV/m acceleration
 - X-band: 105 MW generated power

- **Dielectric disk structure**
 - An alternative structure to remarkably improve the efficiency
 - 33% AC to main beam efficiency with other advanced technologies
FUTURE STUDY

- **Dielectric power extractor**
 - High power test with thick coating
 - Other limiting factors
- **Dielectric accelerator**
 - High power test for higher gradient
 - DDA
- **Short pulse TBA**
 - Full staging with kicker and septum
ACKNOWLEDGEMENT

- The work at AWA is funded through the U.S. Department of Energy Office of Science under Contract No. DE-AC02-06CH11357.