Compensation of insertion device induced emittance variations in ultralow emittance storage rings

Fernando Sannibale
IPAC 18
Vancouver, BC Canada, May 2, 2018
Content

• Problem definition.

• Possible compensation schemes:
 • Use a variable gap wiggler to generate emittance.
 • Use of a “dispersion bump” inside a wiggler with gap at a fixed position.
 • Compensation by small variation of the beam momentum.
 • Using intra-beam scattering (IBS).

• Final Considerations.
The MBA Lattice Revolution

Tens of pm emittances, orders of magnitude brightness increase, approaching fully photon coherence in the transverse plane!
Ultra-Low Emittance MBA Lattices
Ultra-Low Emittance MBA Lattices

Example: ALS-U 9BA Lattice v18_127 (obsolete)

- 1.15 nC/bunch - 2 GeV - L = 196.5 m - h = 328
- Dipole: $\rho = 8.6$ m ; $k_1 = -7$ m$^{-2}$; $\theta = 3.33$ deg
- $\varepsilon_0 = 109$ pm (no IBS) – 12 super-periods
- Full coupling:
 - $\varepsilon_x = \varepsilon_y = 81.32$ pm (with IBS and harm. cav.)
 - $\sigma_z = 14.56$ mm (with IBS and harm. cavities)
 - $\delta_0 = 0.0828\%$ - $U_0 = 181.9$ keV (no IDs)
 - $\alpha_c = 2.68 \times 10^{-4}$ - $j_x = 1.865$
Ultra-Low Emittance MBA Lattices

Example: ALS-U 9BA Lattice v18_127 (obsolete)

- 1.15 nC/bunch - 2 GeV - L = 196.5 m - h = 328
- Dipole: $\rho = 8.6 \text{ m}; k_1 = -7 \text{ m}^2; \theta = 3.33 \text{ deg}$
- $\varepsilon_0 = 109 \text{ pm}$ (no IBS) – 12 super-periods
- Full coupling:
 - $\varepsilon_x = \varepsilon_y = 81.32 \text{ pm}$ (with IBS and harm. cav.)
 - $\sigma_z = 14.56 \text{ mm}$ (with IBS and harm. cavities)
 - $\delta_0 = 0.0828\% - U_0 = 181.9 \text{ keV}$ (no IDs)
 - $\alpha_c = 2.68 \times 10^{-4} - j_x = 1.865$

In such lattices, the typically large bending radius decreases the energy radiated in the bends making it comparable to that radiated in insertion devices (IDs).

In this situation, the IDs’ contribution significantly contributes to radiation damping and hence in defining the ring natural emittance.
Ultra-Low Emittance MBA Lattices

Example: ALS-U 9BA Lattice v18_127 (obsolete)

- **1.15 nC/bunch - 2 GeV - L = 196.5 m - h = 328**
- Dipole: $\rho = 8.6$ m ; $k_1 = -7$ m$^{-2}$; $\theta = 3.33$ deg
- $\varepsilon_0 = 109$ pm (no IBS) – 12 super-periods
- Full coupling:
 - $\varepsilon_x = \varepsilon_y = 81.32$ pm (with IBS and harm. cav.)
 - $\sigma_z = 14.56$ mm (with IBS and harm. cavities)
 - $\delta_0 = 0.0828\%$ - $U_0 = 181.9$ keV (no IDs)
 - $\alpha_c = 2.68 \times 10^{-4}$ - $j_x = 1.865$

In such lattices, the typically large bending radius decreases the energy radiated in the bends making it comparable to that radiated in insertion devices (IDs).

In this situation, the IDs’ contribution significantly contributes to radiation damping and hence in defining the ring natural emittance.
Significant Emittance Dependence on IDs
Significant Emittance Dependence on IDs

Energy losses induced by IDs increase damping decreasing emittance (ELEGANT simulations).
Significant Emittance Dependence on IDs

Energy losses induced by IDs increase damping decreasing emittance (ELEGANT simulations).

In this particular example using the ALS-U lattice v18.127, a 20 keV energy loss induced by IDs decreases the emittance by about 5 pm equivalent to ~6% of emittance reduction.
Energy losses induced by IDs increase damping decreasing emittance (ELEGANT simulations).

In this particular example using the ALS-U lattice v18.127, a 20 keV energy loss induced by IDs decreases the emittance by about 5 pm equivalent to ~6% of emittance reduction.

How large are ID induced energy losses in a real ring?
Example of ID Induced Energy Losses in a Ring
Example of ID Induced Energy Losses in a Ring

ALS Insertion Devices

<table>
<thead>
<tr>
<th>Name</th>
<th>Alias</th>
<th>BL</th>
<th>New?</th>
<th>λ₀ (mm)</th>
<th>BXₘₐₓ (T)</th>
<th>BXₘᵢₙ (T)</th>
<th>BYₘₐₓ (T)</th>
<th>BYₘᵢₙ (T)</th>
<th>No. periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP050</td>
<td></td>
<td>4.0.2</td>
<td>No</td>
<td>50</td>
<td>0.58</td>
<td>0.1</td>
<td>0.8</td>
<td>0.1</td>
<td>37</td>
</tr>
<tr>
<td>QEP090</td>
<td>MERLIN</td>
<td>4.0.3</td>
<td>No</td>
<td>90</td>
<td>0.78</td>
<td>0.06</td>
<td>1.18</td>
<td>0.06</td>
<td>20.5</td>
</tr>
<tr>
<td>U14</td>
<td></td>
<td>5.0.1</td>
<td>No</td>
<td>114</td>
<td>1.94</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>EP038</td>
<td>COSMIC</td>
<td>7.0.1</td>
<td>No</td>
<td>38</td>
<td>0.99</td>
<td>0.11</td>
<td>0.67</td>
<td>0.11</td>
<td>44.5</td>
</tr>
<tr>
<td>EP070</td>
<td>MAESTRO</td>
<td>7.0.2</td>
<td>No</td>
<td>70</td>
<td>1.18</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>26.5</td>
</tr>
<tr>
<td>U50</td>
<td></td>
<td>8.0.1</td>
<td>No</td>
<td>50</td>
<td>0.85</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>U100</td>
<td></td>
<td>9.0.1</td>
<td>No</td>
<td>100</td>
<td>0.98</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>U100</td>
<td></td>
<td>9.0.1</td>
<td>No</td>
<td>100</td>
<td>0.8</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>EP050</td>
<td></td>
<td>11.0.1</td>
<td>No</td>
<td>50</td>
<td>0.85</td>
<td>0.1</td>
<td>0.57</td>
<td>0.1</td>
<td>36.5</td>
</tr>
<tr>
<td>EP050</td>
<td></td>
<td>11.0.2</td>
<td>No</td>
<td>50</td>
<td>0.85</td>
<td>0.1</td>
<td>0.58</td>
<td>0.1</td>
<td>37</td>
</tr>
<tr>
<td>U80</td>
<td></td>
<td>12.0.1</td>
<td>No</td>
<td>80</td>
<td>0.8</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>55</td>
</tr>
</tbody>
</table>
Example of ID Induced Energy Losses in a Ring

ALS Insertion Devices

<table>
<thead>
<tr>
<th>Name</th>
<th>Alias</th>
<th>BL</th>
<th>New?</th>
<th>λ₀ (mm)</th>
<th>BX_{max} (T)</th>
<th>BX_{min} (T)</th>
<th>BY_{max} (T)</th>
<th>BY_{min} (T)</th>
<th>No. periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPU50</td>
<td></td>
<td>4.0.2</td>
<td>No</td>
<td>50</td>
<td>0.58</td>
<td>0.1</td>
<td>0.8</td>
<td>0.1</td>
<td>37</td>
</tr>
<tr>
<td>QEP90</td>
<td>MERLIN</td>
<td>4.0.3</td>
<td>No</td>
<td>90</td>
<td>0.78</td>
<td>0.06</td>
<td>1.18</td>
<td>0.06</td>
<td>20.5</td>
</tr>
<tr>
<td>U114</td>
<td></td>
<td>5.0.1</td>
<td>No</td>
<td>114</td>
<td>1.94</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>EPU38</td>
<td>COSMIC</td>
<td>7.0.1</td>
<td>No</td>
<td>38</td>
<td>0.99</td>
<td>0.11</td>
<td>0.67</td>
<td>0.11</td>
<td>44.5</td>
</tr>
<tr>
<td>EPU70</td>
<td>MAESTRO</td>
<td>7.0.2</td>
<td>No</td>
<td>70</td>
<td>1.18</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>26.5</td>
</tr>
<tr>
<td>U50</td>
<td></td>
<td>8.0.1</td>
<td>No</td>
<td>50</td>
<td>0.85</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>U100</td>
<td></td>
<td>9.0.1</td>
<td>No</td>
<td>100</td>
<td>0.98</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>U100</td>
<td></td>
<td>9.0.1</td>
<td>No</td>
<td>100</td>
<td>0.8</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>EPU50</td>
<td></td>
<td>11.0.1</td>
<td>No</td>
<td>50</td>
<td>0.85</td>
<td>0.1</td>
<td>0.57</td>
<td>0.1</td>
<td>36.5</td>
</tr>
<tr>
<td>EPU50</td>
<td></td>
<td>11.0.2</td>
<td>No</td>
<td>50</td>
<td>0.85</td>
<td>0.1</td>
<td>0.58</td>
<td>0.1</td>
<td>37</td>
</tr>
<tr>
<td>U80</td>
<td></td>
<td>12.0.1</td>
<td>No</td>
<td>80</td>
<td>0.8</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>55</td>
</tr>
</tbody>
</table>

Random ID gaps variation generates random beam radiated power variations.
Example of ID Induced Energy Losses in a Ring

Random ID gaps variation generates random beam radiated power variations.
Random ID gaps variation generates random beam radiated power variations.

\[\langle U_0 \rangle = 18.5 \text{ keV}, \sigma_{U0} = 5.6 \text{ keV} \]

\[\frac{\Delta \varepsilon}{\varepsilon} \sim 7 \% \quad (4 \text{ sigma}) \]
Example of ID Induced Energy Losses in a Ring

Random ID gaps variation generates random beam radiated power variations.

ALS Insertion Devices

<table>
<thead>
<tr>
<th>Name</th>
<th>Alias</th>
<th>BL</th>
<th>New?</th>
<th>λ_0 (mm)</th>
<th>$B_{\text{max}} (T)$</th>
<th>$B_{\text{min}} (T)$</th>
<th>$B_{\text{max}} (T)$</th>
<th>$B_{\text{min}} (T)$</th>
<th>No. periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP050</td>
<td>4.0.2</td>
<td>No</td>
<td>50</td>
<td>0.58</td>
<td>0.1</td>
<td>0.8</td>
<td>0.1</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>QEP090</td>
<td>MERLIN</td>
<td>4.0.3</td>
<td>No</td>
<td>90</td>
<td>0.78</td>
<td>0.06</td>
<td>1.18</td>
<td>0.06</td>
<td>20.5</td>
</tr>
<tr>
<td>U114</td>
<td>5.0.1</td>
<td>No</td>
<td>114</td>
<td>1.94</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>EP038</td>
<td>COSMIC</td>
<td>7.0.1</td>
<td>No</td>
<td>38</td>
<td>0.89</td>
<td>0.11</td>
<td>0.67</td>
<td>0.11</td>
<td>44.5</td>
</tr>
<tr>
<td>EP070</td>
<td>MAESTRO</td>
<td>7.0.2</td>
<td>No</td>
<td>70</td>
<td>1.18</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>26.5</td>
</tr>
<tr>
<td>U50</td>
<td>8.0.1</td>
<td>No</td>
<td>50</td>
<td>0.85</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>U100</td>
<td>9.0.1</td>
<td>No</td>
<td>100</td>
<td>0.98</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>U100</td>
<td>9.0.1</td>
<td>No</td>
<td>100</td>
<td>0.8</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>EP050</td>
<td>11.0.1</td>
<td>No</td>
<td>50</td>
<td>0.85</td>
<td>0.1</td>
<td>0.57</td>
<td>0.1</td>
<td>36.5</td>
<td></td>
</tr>
<tr>
<td>EP050</td>
<td>11.0.2</td>
<td>No</td>
<td>50</td>
<td>0.85</td>
<td>0.1</td>
<td>0.58</td>
<td>0.1</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>U80</td>
<td>12.0.1</td>
<td>No</td>
<td>80</td>
<td>0.8</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>

$<U_0> = 18.5$ keV, $\sigma_{U_0} = 5.6$ keV

$\Delta \varepsilon / \varepsilon \sim 7\%$ (4 sigma)

How important such an emittance variation to experiments?
X-ray microscopy/spectroscopy technique very sensitive to beam size and hence to emittance variations.

Compensation by Variable Gap Wiggler
Compensation by Variable Gap Wiggler

\[U_0 = \frac{C_Y}{2\pi} E^4 I_2 \quad C_Y = 8.846 \times 10^{-5} \; m/GeV^3 \]

\[I_2 = \int \frac{ds}{\rho^2} = \frac{B^2 L_w}{2 (B\rho)^2} \quad \text{(wiggler)} \]

\[B = 2\pi \frac{mc}{e} \frac{K_w}{\lambda_w} \quad \text{(wiggler)} \]

\[U_0 = \pi C_Y \left(\frac{mc^2}{e} \right)^4 \gamma^2 \left(\frac{K_w}{\lambda_w} \right)^2 L_w \]
Compensation by Variable Gap Wiggler

\[U_0 = \frac{C_Y}{2\pi} E^4 I_2 \quad C_Y = 8.846 \times 10^{-5} \; m/GeV^3 \]

\[I_2 = \oint \frac{ds}{\rho^2} = \frac{B^2 L_w}{2 (B \rho)^2} \quad \text{(wiggler)} \]

\[B = 2\pi \frac{mc}{e} \frac{K_w}{\lambda_w} \quad \text{(wiggler)} \]

\[U_0 = \pi C_Y \left(\frac{m c^2}{e} \right)^4 \gamma^2 \left(\frac{K_w}{\lambda_w} \right)^2 L_w \]

The gap of the compensating wiggler is closed when the other IDs are open, and is gradually opened to keep the emittance constant when the other IDs close.
Compensation by Variable Gap Wiggler

\[U_0 = \frac{c_Y}{2\pi} E^4 I_2 \quad C_Y = 8.846 \times 10^{-5} \text{ m/GeV}^3 \]

\[I_2 = \oint \frac{ds}{\rho^2} = \frac{B^2 L_w}{2 (B \rho)^2} \quad \text{(wiggler)} \]

\[B = 2\pi \frac{mc}{e} \frac{K_w}{\lambda_w} \quad \text{(wiggler)} \]

The gap of the compensating wiggler is closed when the other IDs are open, and is gradually opened to keep the emittance constant when the other IDs close.

Pros.:
- Allow operating at an emittance value smaller than the one obtainable from the bare lattice without IDs.
Compensation by Variable Gap Wiggler

\[U_0 = \frac{c_Y}{2\pi} E^4 I_2 \quad C_Y = 8.846 \times 10^{-5} \text{ m/GeV}^3 \]

\[I_2 = \int \frac{ds}{\rho^2} = \frac{B^2 L_w}{2 (B\rho)^2} \quad \text{(wiggler)} \]

\[B = 2\pi \frac{mc}{e} \frac{K_w}{\lambda_w} \quad \text{(wiggler)} \]

\[U_0 = \pi C_Y \left(\frac{m c^2}{e} \right)^4 \gamma^2 \left(\frac{K_w}{\lambda_w} \right)^2 L_w \]

The gap of the compensating wiggler is closed when the other IDs are open, and is gradually opened to keep the emittance constant when the other IDs close.

Pros.:
- Allow operating at an emittance value smaller than the one obtainable from the bare lattice without IDs.

Cons.:
- Requires a dedicated wiggler
Compensation by Variable Gap Wiggler

\[U_0 = \frac{C_Y}{2\pi} E^4 I_2 \quad C_Y = 8.846 \times 10^{-5} \text{ m/GeV}^3 \]

\[I_2 = \int \frac{ds}{\rho^2} = \frac{B^2 L_w}{2 (B \rho)^2} \quad \text{(wiggler)} \]

\[B = 2\pi \frac{mc}{e} \frac{K_w}{\lambda_w} \quad \text{(wiggler)} \]

\[
U_0 = \pi C_Y \left(\frac{mc^2}{e} \right)^4 \gamma^2 \left(\frac{K_w}{\lambda_w} \right)^2 L_w
\]

The gap of the compensating wiggler is closed when the other IDs are open, and is gradually opened to keep the emittance constant when the other IDs close.

Pros.:
• Allow operating at an emittance value smaller than the one obtainable from the bare lattice without IDs.

Cons.:
• Requires a dedicated wiggler

ALS Wiggler example: \(\lambda_w = 0.114 \text{ m}; \) \(N_{\text{Periods}} = 29; \) \(L_w = 3.3 \text{ m}; \) \(K_w = 20.6; \) \(B_w = 1.94 \text{ T}; \)

\[U_0 = 28.3 \text{ keV @ 1.9 GeV} \text{ or } 31.4 \text{ keV @ 2 GeV} \]
Compensation by Local Dispersion Bump in Fixed Gap Wiggler

\[\varepsilon_0 = C_q \frac{\gamma^2 I_5}{J_x I_2} \]
Compensation by Local Dispersion Bump in Fixed Gap Wiggler

\[
\varepsilon_0 = C_q \frac{\gamma^2 I_5}{J_x I_2}
\]

\[
J_x = 1 - \frac{I_4}{I_2}
\]

\[
I_2 = \int \frac{ds}{\rho^2}
\]

\[
I_4 = \int \frac{\eta_x}{\rho} \left(\frac{1}{\rho^2} + 2k_1 \right) ds
\]

\[
I_5 = \int \frac{\mathcal{H}}{|\rho^3|} ds
\]

\[
\mathcal{H} = \gamma x \eta_x^2 + 2\alpha_x \eta_x \eta'_x + \beta_x \eta'_x^2
\]

\[
C_q = \frac{55}{32\sqrt{3}} \frac{h}{2\pi mc} \approx 3.832 \times 10^{-13} m
\]

\[
k_1 = \frac{e}{p} \frac{\partial B_y}{\partial x}
\]
Compensation by Local Dispersion Bump in Fixed Gap Wiggler

\[
\varepsilon_0 = C_q \frac{\gamma^2 I_5}{J_x I_2}
\]

\[
I_2 = \int \frac{ds}{\rho^2}
\]

\[
J_x = 1 - \frac{I_4}{I_2}
\]

\[
I_4 = \int \frac{\eta_x}{\rho} \left(\frac{1}{\rho^2} + 2k_1 \right) ds
\]

\[
k_1 = \frac{e}{p} \frac{\partial B_y}{\partial x}
\]

\[
\mathcal{H} = \gamma_x \eta_x^2 + 2\alpha_x \eta_x \eta'_x + \beta_x \eta'_x^2
\]

Assuming a horizontal dispersion bump Inside the wiggler with \(\eta_x \) constant and \(\eta'_x = 0 \)

\[
C_q = \frac{55}{32\sqrt{3}} \frac{h}{2\pi mc} \approx 3.832 \times 10^{-13} m
\]
Compensation by Local Dispersion Bump in Fixed Gap Wiggler

\[\varepsilon_0 = C_q \frac{\gamma^2 I_5}{J_x I_2} \]

\[I_2 = \int \frac{ds}{\rho^2} \]

\[J_x = 1 - \frac{I_4}{I_2} \]

\[I_4 = \int \frac{\eta_x \left(\frac{1}{\rho^2} + 2k_1 \right)}{\rho} ds \]

\[k_1 = \frac{e}{p} \frac{\partial B_y}{\partial x} \]

\[I_5 = \int \frac{\mathcal{H}}{|\rho|^3} ds \]

\[\mathcal{H} = \gamma_x \eta_x^2 + 2\alpha_x \eta_x \eta_x' + \beta_x \eta_x'^2 \]

Assuming a horizontal dispersion bump inside the wiggler with \(\eta_x \) constant and \(\eta_x' = 0 \)

\[\Delta I_{5W} \sim \frac{4}{3\pi} \frac{B_W^3}{(B\rho)^3} L_w \langle \gamma_x \rangle \eta_x^2, \quad \Delta I_{2W} = 0, \quad \Delta I_{4W} \sim 0 \]
Compensation by Local Dispersion Bump in Fixed Gap Wiggler

\[\varepsilon_0 = C_q \frac{\gamma^2 I_5}{J_x I_2} \]

\[I_2 = \int \frac{ds}{\rho^2} \quad C_q = \frac{55}{32\sqrt{3}} \frac{h}{2\pi mc} \approx 3.832 \times 10^{-13} m \]

\[J_x = 1 - \frac{I_4}{I_2} \quad I_4 = \int \frac{\eta_x}{\rho} \left(\frac{1}{\rho^2} + 2k_1 \right) ds \quad k_1 = \frac{e}{p} \frac{\partial B_y}{\partial x} \]

\[I_5 = \int \frac{\mathcal{H}}{|\rho^3|} ds \quad \mathcal{H} = \gamma_x \eta_x^2 + 2\alpha_x \eta_x \eta'_x + \beta_x \eta'_x^2 \]

Assuming a horizontal dispersion bump inside the wiggler with \(\eta_x \) constant and \(\eta'_x = 0 \)

\[\Delta I_{5W} \sim \frac{4}{3\pi (B\rho)^3} L \langle \gamma_x \rangle \eta_x^2, \quad \Delta I_{2W} = 0, \quad \Delta I_{4W} \sim 0 \]

\[\frac{\Delta \varepsilon}{\varepsilon} \sim \frac{\Delta I_{5W}}{I_5} \]
Compensation by Local Dispersion Bump in Fixed Gap Wiggler

\[\varepsilon_0 = C_q \frac{\gamma^2 I_5}{J_x I_2} \]

\[I_2 = \int \frac{ds}{\rho^2} \]

\[J_x = 1 - \frac{I_4}{I_2} \]

\[I_4 = \int \frac{\eta_x}{\rho} \left(\frac{1}{\rho^2} + 2k_1 \right) ds \]

\[k_1 = \frac{e \partial B_y}{p \partial x} \]

\[I_5 = \int \frac{\mathcal{H}}{|\rho^3|} ds \]

\[\mathcal{H} = \gamma_x \eta_x^2 + 2\alpha_x \eta_x \eta_x' + \beta_x \eta_x'^2 \]

Assuming a horizontal dispersion bump inside the wiggler with \(\eta_x \) constant and \(\eta_x' = 0 \)

\[\Delta I_{5W} \sim \frac{4}{3\pi (B\rho)^3} L_w \langle \gamma_x \rangle \eta_x^2, \quad \Delta I_{2W} = 0, \quad \Delta I_{4W} \sim 0 \]

Using the ALS wiggler and \(\langle \gamma_x \rangle = 1/2.5 \text{ m}^{-1} \) (ALS-U 18.127) and \(\eta_x = 1 \text{ cm} \) \(\Rightarrow \Delta \varepsilon / \varepsilon \sim 5\% \)
Compensation by Local Dispersion Bump in Fixed Gap Wiggler

\[\varepsilon_0 = C_q \frac{\gamma^2 I_5}{J_x I_2} \]

\[I_2 = \int \frac{ds}{\rho^2} \]

\[J_x = 1 - \frac{I_4}{I_2} \]

\[I_4 = \int \frac{\eta_x}{\rho} \left(\frac{1}{\rho^2} + 2k_1 \right) ds \]

\[k_1 = \frac{e}{p} \frac{\partial B_y}{\partial x} \]

\[\mathcal{H} = \gamma_x \eta_x^2 + 2\alpha_x \eta_x \eta_x' + \beta_x \eta_x'^2 \]

Assuming a horizontal dispersion bump inside the wiggler with \(\eta_x \) constant and \(\eta_x' = 0 \)

\[\rightarrow \Delta I_{5W} \sim \frac{4}{3\pi (B\rho)^3} L_w \langle \gamma_x \rangle \eta_x^2, \quad \Delta I_{2W} = 0, \quad \Delta I_{4W} \sim 0 \]

\[\frac{\Delta \varepsilon}{\varepsilon} \sim \frac{\Delta I_{5W}}{I_5} \]

Using the ALS wiggler and \(\langle \gamma_x \rangle = 1/2.5 \text{ m}^{-1} \) (ALS-U 18.127) and \(\eta_x = 1 \text{ cm} \rightarrow \Delta \varepsilon/\varepsilon \sim 5\% \)

Pros:

- Potentially compatible with user operation of the wiggler at fixed gap (if wiggler users can accept horizontal beam size variations)
Compensation by Local Dispersion Bump in Fixed Gap Wiggler

\[
\varepsilon_0 = C_q \frac{\gamma^2 I_5}{J_x I_2}
\]

\[
J_x = 1 - \frac{I_4}{I_2}
\]

\[
I_2 = \int \frac{ds}{\rho^2}
\]

\[
I_4 = \int \frac{\eta_x}{\rho} \left(\frac{1}{\rho^2} + 2k_1 \right) ds
\]

\[
I_5 = \int \frac{\mathcal{H}}{|\rho^3|} ds
\]

\[
C_q = \frac{55}{32\sqrt{3}} \frac{h}{2\pi mc} \approx 3.832 \times 10^{-13} m
\]

Assuming a horizontal dispersion bump inside the wiggler with \(\eta_x \) constant and \(\eta'_x = 0 \)

\[\Delta I_{5W} \sim \frac{4}{3\pi (B\rho)^3} L_W \langle \gamma_x \rangle \eta_x^2, \quad \Delta I_{2W} = 0, \quad \Delta I_{4W} \sim 0\]

\[
\frac{\Delta \varepsilon}{\varepsilon} \sim \frac{\Delta I_{5W}}{I_5}
\]

Using the ALS wiggler and \(\langle \gamma_x \rangle = 1/2.5 \text{ m}^{-1} \) (ALS-U 18.127) and \(\eta_x = 1 \text{ cm} \Rightarrow \Delta \varepsilon/\varepsilon \sim 5\% \)

Pros:
- Potentially compatible with user operation of the wiggler at fixed gap
 (if wiggler users can accept horizontal beam size variations)

Cons:
- Requires extra knobs to perform the local dispersion bump.
- Bump size significant. Possible effects on beam dynamics should be evaluated.
Compensation by Small Beam Momentum Variations
Compensation by Small Beam Momentum Variations

The beam momentum can be modified by varying the RF frequency

\[\delta p = \frac{dp}{p_0} = -\frac{1}{\alpha_c} \frac{df_{RF}}{f_{RF}} \]
Compensation by Small Beam Momentum Variations

The beam momentum can be modified by varying the RF frequency.

\[
\delta p = \frac{dp}{p_0} = -\frac{1}{\alpha_C} \frac{df_{RF}}{f_{RF}}
\]

And due to the dependence of the emittance terms on energy, we can change the emittance:

\[
\varepsilon_0 = C_q \frac{\gamma^2 I_5}{I_x I_2}
\]
Compensation by Small Beam Momentum Variations

The beam momentum can be modified by varying the RF frequency.

And due to the dependence of the emittance terms on energy, we can change the emittance.

\[
\delta p = \frac{dp}{p_0} = -\frac{1}{\alpha_c} \frac{df_{RF}}{f_{RF}}
\]

\[
\varepsilon_0 = C_q \frac{\gamma^2 I_5}{J_x I_2}
\]
Compensation by Small Beam Momentum Variations

The beam momentum can be modified by varying the RF frequency

And due to the dependence of the emittance terms on energy, we can change the emittance

\[\delta p = \frac{dp}{p_0} = -\frac{1}{\alpha_c} \frac{df_{RF}}{f_{RF}} \]

\[\varepsilon_0 = C_q \frac{\gamma^2 I_5}{J_x I_2} \]

In the ALS-U v18.127 example, a 5% emittance variation can be obtained with ~ 1% momentum variation (~ 1.3 kHz RF variation)
Compensation by Small Beam Momentum Variations

The beam momentum can be modified by varying the RF frequency.

\[\delta p = \frac{dp}{p_0} = -\frac{1}{\alpha_c} \frac{df_{RF}}{f_{RF}} \]

And due to the dependence of the emittance terms on energy, we can change the emittance:

\[\varepsilon_0 = C_q \frac{\gamma^2 I_5}{I_x I_2} \]

In the ALS-U v18.127 example, a 5% emittance variation can be obtained with
~ 1% momentum variation
(\sim 1.3 kHz RF variation)

The scheme it is not practical because it moves source points in dipoles, change the energy of the radiated photons, and can challenge the ring dynamic aperture.
Using Intra-beam Scattering (IBS) to Compensate Emittance
Using Intra-beam Scattering (IBS) to Compensate Emittance

\[
\frac{1}{T_x} \approx 2\pi^{3/2} A \sqrt{\frac{\mathcal{H}_x \sigma_H^2}{\varepsilon_x}} \left(\frac{1}{a} g \left(\frac{b}{a} \right) + \frac{1}{b} g \left(\frac{a}{b} \right) \right) - a g \left(\frac{b}{a} \right) \quad \text{(log)}
\]

\[
A = \frac{r_e^2 c N_0}{64\pi^2\gamma^4 \varepsilon_x \varepsilon_y \sigma_z \sigma_\delta}
\]

Bjorken-Mtingwa

\[
\varepsilon'_{x_0} = \frac{1}{1 - \frac{T_x}{\tau_x}} \varepsilon_{x_0}
\]
Using Intra-beam Scattering (IBS) to Compensate Emittance

\[
\varepsilon'_{x0} = \frac{1}{1 - \frac{\tau_x}{T_x}} \varepsilon_{x0}
\]

\[
\frac{1}{T_x} \approx 2\pi^{3/2} A \left[\frac{\mathcal{H}_x \sigma_H^2}{\varepsilon_x} \left(\frac{1}{a} g\left(\frac{b}{a}\right) + \frac{1}{b} g\left(\frac{a}{b}\right) \right) - a g\left(\frac{b}{a}\right) \right] \text{ (log)}
\]

\[
A = \frac{r_e^2 c N_0}{64\pi^2 \gamma^4 \varepsilon_x \varepsilon_y \sigma_z \sigma_\delta}
\]

\[
\Rightarrow \frac{\Delta \varepsilon'_{x0}}{\varepsilon_{x0}} \sim \frac{\tau_x}{T_x} \propto A \propto \frac{1}{\sigma_z} \quad \text{for } \frac{\tau_x}{T_x} \ll 1
\]

Bjorken-Mtingwa
Using Intra-beam Scattering (IBS) to Compensate Emittance

\[
\frac{1}{T_x} \approx 2\pi^{3/2} A \left[\frac{H_x \sigma_H^2}{\varepsilon_x} \left(\frac{1}{a} g \left(\frac{b}{a} \right) + \frac{1}{b} g \left(\frac{a}{b} \right) \right) - a g \left(\frac{b}{a} \right) \right] \text{ (log)}
\]

\[
A = \frac{r_e^2 c N_0}{64\pi^2 \gamma^4 \varepsilon_x \varepsilon_y \sigma_z \sigma_\delta}
\]

Bjorken-Mtingwa

\[
\Rightarrow \frac{\Delta \varepsilon'_{x0}}{\varepsilon_{x0}} \sim \frac{\tau_x}{T_x} \propto A \propto \frac{1}{\sigma_z} \quad \text{for} \; \frac{\tau_x}{T_x} \ll 1
\]

The last expression shows that bunch length can be used for generating emittance variations and hence to compensate for ID induced emittance variations.
Using Intra-beam Scattering (IBS) to Compensate Emittance

\[
\varepsilon'_{x0} = -\frac{1}{1 - \frac{T_x}{\tau_x}} \varepsilon_{x0}
\]

\[
\frac{1}{T_x} \approx 2\pi^{3/2} A \left(\frac{\mathcal{H}_x \sigma_H^2}{\varepsilon_x} \left(\frac{1}{a} g \left(\frac{b}{a} \right) + \frac{1}{b} g \left(\frac{a}{b} \right) \right) - a g \left(\frac{b}{a} \right) \right) (\log)
\]

\[
A = \frac{r_e^2 c N_0}{64\pi^2 \gamma^4 \varepsilon_x \varepsilon_y \sigma_z \sigma_\delta}
\]

\[
\Rightarrow \frac{\Delta \varepsilon'_{x0}}{\varepsilon_{x0}} \sim \frac{\tau_x}{T_x} \propto A \propto \frac{1}{\sigma_z} \quad \text{for} \quad \frac{\tau_x}{T_x} \ll 1
\]

The last expression shows that bunch length can be used for generating emittance variations and hence to compensate for ID induced emittance variations.

Harmonic cavities, when present, can be used for that purpose.
Using Intra-beam Scattering (IBS) to Compensate Emittance

IDs losses simulated with ELEGANT by adding 12 wigglers to the ALS-U v18.127 lattice:

\[\lambda_W = 7.63 \text{cm}, \ L_W = 4.196 \text{ m}, \ N_p = 55, \ \text{variable} \ \mathbf{K}_W \]
Using Intra-beam Scattering (IBS) to Compensate Emittance

IDs losses simulated with ELEGANT by adding 12 wigglers to the ALS-U v18.127 lattice:

\[\lambda_W = 7.63\text{cm}, \quad L_W = 4.196\text{ m}, \quad N_p=55, \text{ variable } K_W \]
Using Intra-beam Scattering (IBS) to Compensate Emittance

IDs losses simulated with ELEGANT by adding 12 wigglers to the ALS-U v18.127 lattice:

\[\lambda_W = 7.63 \text{cm}, \ L_W = 4.196 \text{ m}, \ N_p = 55, \ \text{variable} \ K_W \]
Using Intra-beam Scattering (IBS) to Compensate Emittance

IDs losses simulated with ELEGANT by adding 12 wigglers to the ALS-U v18.127 lattice: $\lambda_W=7.63\text{cm}$, $L_W = 4.196\text{ m}$, $N_p=55$, variable K_W.

- ALS-U v18.127 with 17.8 keV wigglers
- 1.15 nC - 2 GeV
- 109.02 pm nat. emi.
- 81.32 pm operation emittance
- 14.56 mm operation bunch length

Fit: $Y = Y_0 + A X^{\text{pow}}$

$Y_0 = 0.77627 \pm 0.00336$

$A = 0.17342 \pm 0.00344$

$\text{pow} = -0.62459 \pm 0.00912$
Using Intra-beam Scattering (IBS) to Compensate Emittance

IDs losses simulated with ELEGANT by adding 12 wigglers to the ALS-U v18.127 lattice:

\[\lambda_W = 7.63 \text{cm}, \quad L_W = 4.196 \text{ m}, \quad N_p = 55, \quad \text{variable } K_W \]
Using Intra-beam Scattering (IBS) to Compensate Emittance

Ids losses simulated with ELEGANT by adding 12 wigglers to the ALS-U v18.127 lattice: \(\lambda_W = 7.63 \text{cm}, L_W = 4.196 \text{ m}, N_p=55 \), variable \(K_W \)

\[
\text{ALS-U v18.127 with 17.8 keV wiggler}
1.15 nC - 2 GeV
109.02 pm nat. emi.
81.32 pm operation emittance
14.56 mm operation bunch length
\]

Fit: \(Y = Y_0 + A X^{\text{pow}} \)
\[
Y_0 = 0.77627 \pm 0.00336
A = 0.17342 \pm 0.00344
\text{pow} = -0.62459 \pm 0.00912
\]

ALS-U v18.127
1.15 nC - 2 GeV - 109.02 pm nat. emi.
81.32 pm operation emittance at full coupling

ID induced losses:
- 8.8 keV
- 17.8 keV
- 35.6 keV
- 51.7 keV
- 71.2 keV

Bunch shortening compensation factor

Fit: \(Y = Y_0 + A e^{(-b X)} \)
\[
Y_0 = 0.25924 \pm 0.0147
A = 0.73631 \pm 0.0139
b = 0.03302 \pm 0.00166 \text{ keV}^{-1}
\]
Using Intra-beam Scattering (IBS) to Compensate Emittance

IDs losses simulated with ELEGANT by adding 12 wigglers to the ALS-U v18.127 lattice: \(\lambda_W=7.63\,\text{cm}, L_W = 4.196\,\text{m}, N_p=55, \text{variable } K_W \)

Example: Wigglers tuned for ~18 keV losses. Emittance decreases to ~95% of the no ID value if the bunch length is not changed. To reestablish the emittance to the original value the bunch must be shortened to ~66% of the no ID value (using the harmonic cavities). Lifetime will be also reduced by the same factor!
Final Considerations

• In presently proposed/built low emittance MBA lattices, insertion device and bend magnet radiation losses are now comparable.
Final Considerations

• In presently proposed/built low emittance MBA lattices, insertion device and bend magnet radiation losses are now comparable.

• ID gaps variations during user operation generate significant emittance variations that ultimately translate on electron and photon beam size variations.
Final Considerations

- In presently proposed/built low emittance MBA lattices, insertion device and bend magnet radiation losses are now comparable.
- ID gaps variations during user operation generate significant emittance variations that ultimately translate on electron and photon beam size variations.
- Such variations can negatively affect some of the users’ experiments and should be preferably compensated.
Final Considerations

- In presently proposed/built low emittance MBA lattices, insertion device and bend magnet radiation losses are now comparable.
- ID gaps variations during user operation generate significant emittance variations that ultimately translate on electron and photon beam size variations.
- Such variations can negatively affect some of the users’ experiments and should be preferably compensated.
- Several compensation schemes with their respective pros and cons were presented and discussed. Including:
Final Considerations

• In presently proposed/built low emittance MBA lattices, insertion device and bend magnet radiation losses are now comparable.

• ID gaps variations during user operation generate significant emittance variations that ultimately translate on electron and photon beam size variations.

• Such variations can negatively affect some of the users’ experiments and should be preferably compensated.

• Several compensation schemes with their respective pros and cons were presented and discussed. Including:
 • A variable gap wiggler can maintain a constant operation emittance but it requires a dedicated wiggler.
Final Considerations

• In presently proposed/built low emittance MBA lattices, insertion device and bend magnet radiation losses are now comparable.

• ID gaps variations during user operation generate significant emittance variations that ultimately translate on electron and photon beam size variations.

• Such variations can negatively affect some of the users’ experiments and should be preferably compensated.

• Several compensation schemes with their respective pros and cons were presented and discussed. Including:
 • A variable gap wiggler can maintain a constant operation emittance but it requires a dedicated wiggler.
 • A dispersion bump in a fixed gap wiggler does not require a dedicated wiggler but requires knobs for the bump control, significant size bumps, and could affect beam dynamics.
Final Considerations

• In presently proposed/built low emittance MBA lattices, insertion device and bend magnet radiation losses are now comparable.

• ID gaps variations during user operation generate significant emittance variations that ultimately translate on electron and photon beam size variations.

• Such variations can negatively affect some of the users’ experiments and should be preferably compensated.

• Several compensation schemes with their respective pros and cons were presented and discussed. Including:
 • A variable gap wiggler can maintain a constant operation emittance but it requires a dedicated wiggler.
 • A dispersion bump in a fixed gap wiggler does not require a dedicated wiggler but requires knobs for the bump control, significant size bumps, and could affect beam dynamics.
 • Small electron beam momentum variations could be used but they move dipole source points, shift photon energy and potentially challenges the ring dynamic aperture.
Final Considerations

- In presently proposed/built low emittance MBA lattices, insertion device and bend magnet radiation losses are now comparable.
- ID gaps variations during user operation generate significant emittance variations that ultimately translate on electron and photon beam size variations.
- Such variations can negatively affect some of the users’ experiments and should be preferably compensated.
- Several compensation schemes with their respective pros and cons were presented and discussed. Including:
 - A variable gap wiggler can maintain a constant operation emittance but it requires a dedicated wiggler.
 - A dispersion bump in a fixed gap wiggler does not require a dedicated wiggler but requires knobs for the bump control, significant size bumps, and could affect beam dynamics.
 - Small electron beam momentum variations could be used but they move dipole source points, shift photon energy and potentially challenges the ring dynamic aperture.
 - Control by IBS requires significant bunch length shortening using harmonic cavities, affecting lifetime and stressing cavity tuning control.